
Tailings Dam Breach Analysis (TDBA)

IMWA Conference, Morgantown, WV April 23, 2024

For research purposes. ©Planet Labs PBC, CC BY-NC-SA 2.0

Hossein Kheirkhah, PhD, PEng

Uthra Sreekumar, Abdolmajid Mohammadian, Ioan Nistor, Colin Rennie

Land Acknowledgement

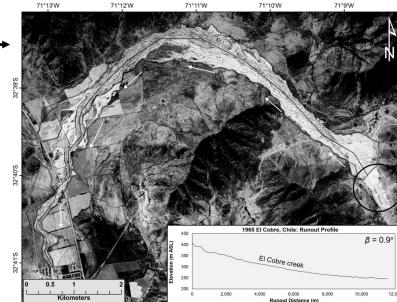
• I acknowledge and honor those Indigenous nations whose territories we are living on, working in, and gathered today for the IMWA Conference!

Topics to Be Discussed

- i. TDBA Background
- ii. Failure Modes and Scenarios
- iii. TDB Process
- iv. Tailings Release Volume
- v. Breach Modelling
- vi. Downstream Routing
- vii. Recommendations and On-going Research

TDBA Background

- Definition: A tailings dam failure is defined as a physical breach of the dam followed by uncontrolled and typically sudden release of any or all stored materials.
- Critical to informing dam consequence classification
- Inform Emergency Response Plan (ERP) and Emergency Preparedness Plan (EPP) which are regulatory requirements in Alberta (and many other jurisdictions)



Mount Polley; image source: canadianconsultingengineer.com

- 1962 China, Huogudu, 3.3 Mm³ of tailings, 171 fatalities
- 1965 Chile, El Cobre, 0.35 Mm³ of tailings, 200 fatalities –
- 1972 US, Buffalo Creek, WV, 0.5 Mm³ of tailings, 125 fatalities
- 1985, Italy, Strava, 0.2 Mm³ of tailings, 268 fatalities
- 2008, China, Toashi, 0.19 Mm³ of tailings, 277 fatalities
- 2019, Brazil, Brumadinho, 12 Mm³ of tailings, 267 fatalities

Useful links:

Chronology of tailings dam failures: WISE Uranium Project

A comprehensive global database of tailings flows (CanBreach): CanBreach Research Data Base

2019, Brazil, Brumadinho, 12 Mm³ of tailings, 267 fatalities

Useful links:

Planet Lab Daily Earth Data: Planet Lab -

Location: Córrego de Feijão mine, Brumadinho, Minas Gerais, Brazil Date: 2019, Jan. 25 Ore: Iron Incident: Tailings dam #1 failure Estimated Release Volume: 12 Mm³ Impacts: The tailings wave devastated the mine's loading station, its administrative area, and two

Impacts: The failings wave devastated the mine's loading station, its administrative area, and two smaller sediment retention basins (B4 and B4A); it then traveled approx. 7 km downhill until reaching Rio Paraopeba, thereby destroying a bridge of the mine's railway branch, and spreading to parts of the local community Vila Ferteco, near the town of Brumadinho; the slurry was then carried further by Rio Paraopeba; 267 people were killed, and several are still reported missing. **Planet© Imagery Date:** 2019, Jan. 29

BARR

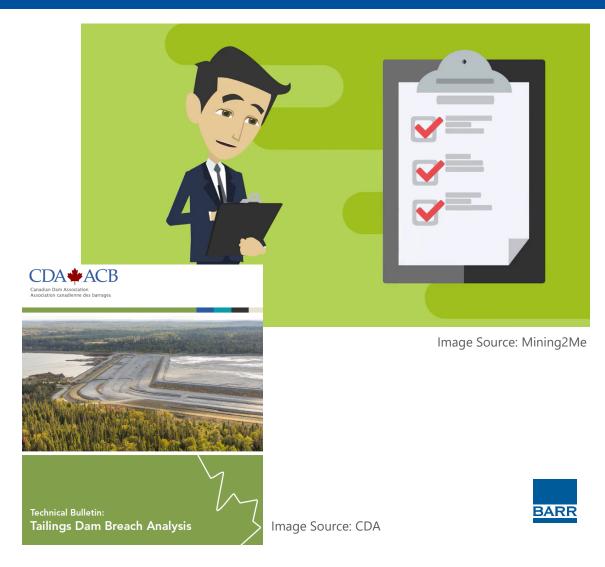
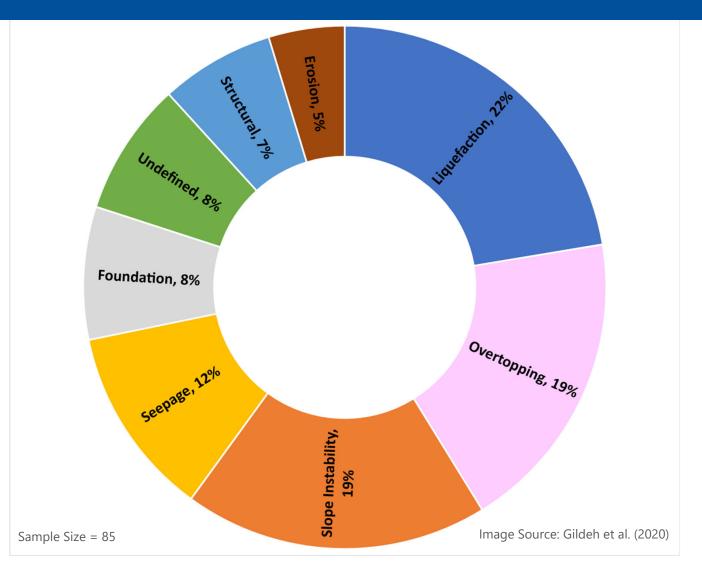


Image Source: Mining2Me



- No longer just a regulatory box to be checked
- The guidelines for TDBA are just coming out
- In 2021, the Canadian Dam Association (CDA) published the first bulletin for TDBA
- A short section in "Tailings Management Handbook – A lifecycle approach", in 2022 by SME

Failure Modes and Scenarios

BARR

Failure Modes and Scenarios (Cont'd)

Two common hydrologic conditions

- Fair weather (aka sunny-day)
- Flood induced (aka wet-/rainy-day)

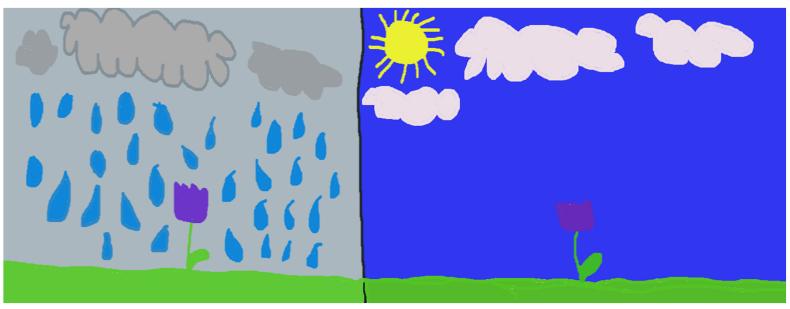
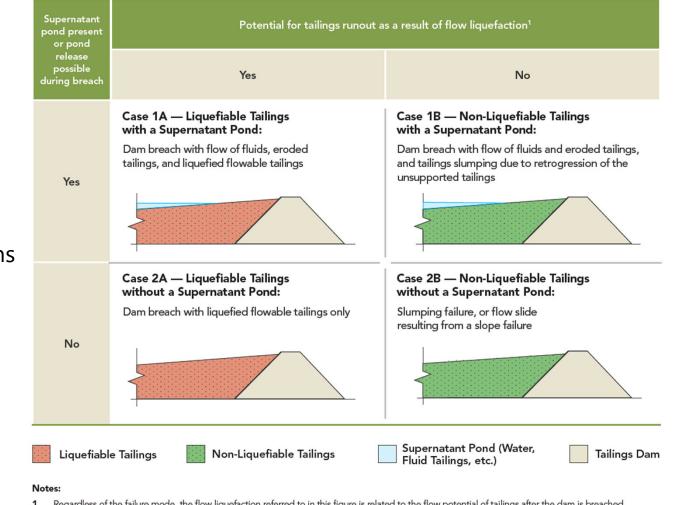


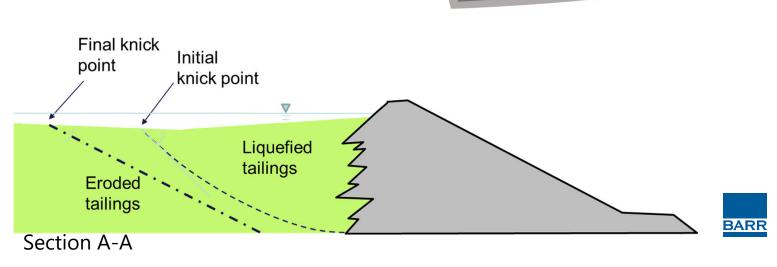
Image Source: deviantart

TDB Process

What is specific to tailings dam failures (compared to water retaining dams)

- Mobilization of tailings
- Runout characteristics (i.e., hyper-concentrated or mud/debris flows)
- Breach shape and dimensions can be very different




Image Source: CDA

1. Regardless of the failure mode, the flow liquefaction referred to in this figure is related to the flow potential of tailings after the dam is breached.

BARR

Tailings Release Volume Estimate

- A geotechnical analysis to determine if the tailings could liquefy (the trigger for tailings liquefaction is the dam failure)
- Estimate the volume of liquefied tailings from:
 - breach geometry
 - *basin geometry*
 - geotechnical data and analysis
- Estimate the volume of eroded tailings based on:
 - the volume of supernatant pond
 - *basin geometry*
 - geotechnical data

Liquefied

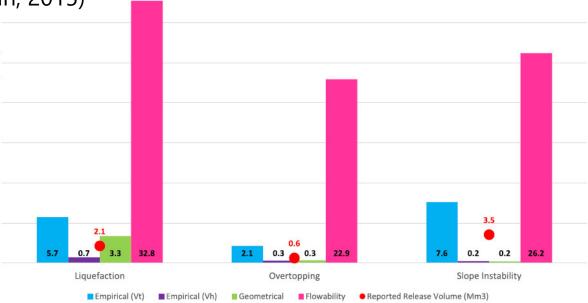
tailings

Breach

width

Eroded tailings

Tailings Release Volume Estimate (Cont'd) – Liquefaction Failure


Tailings Release Volume Estimate (Cont'd)

- Other simplified methods are available!
 - Statistical regression (e.g., Rico et al., 2008; Larrauri and Lall, 2018; etc.)

(Mm³)

Estimated Release

Flowability approximation (Fontaine and Martin, 2015)

Mine Water and the Environment https://doi.org/10.1007/s10230-020-00718-2

TECHNICAL ARTICLE

Tailings Dam Breach Analysis: A Review of Methods, Practices, and Uncertainties

 $Hossein\,Kheirkhah\,Gildeh^{1} \fbox{} \cdot Alexandra\,Halliday^{2} \cdot Alfredo\,Arenas^{2} \cdot Hua\,Zhang^{1}$

Useful links:

Gildeh et al. (2020): Paper on TDBA

Fig. 4 Release volume by method and failure mechanism

Image Source: Gildeh et al. (2020)

Breach Modelling

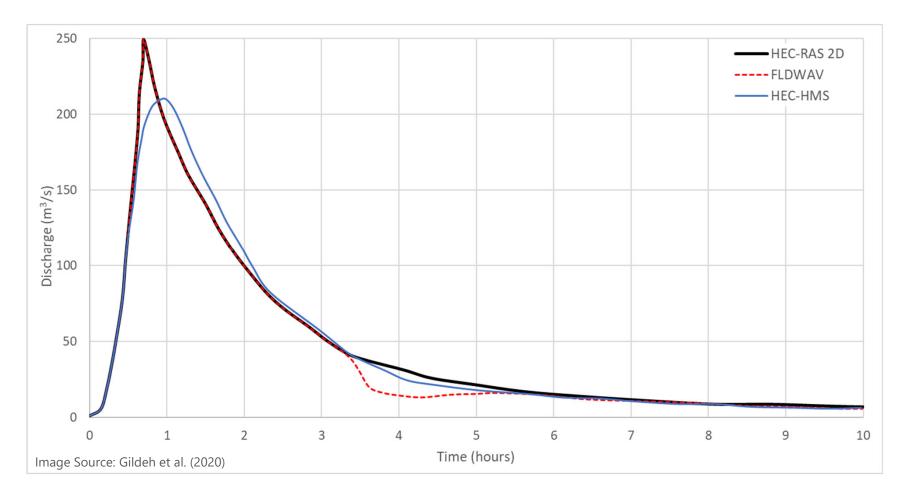
- Breach modelling will identify the shape of the breach hydrograph and its peak
- Breach prediction methods for earthen dams
 - parametric models
 - semi-physically based models
 - physically based models

Useful links:

West et al. (2018): Breach Prediction Paper

A guide to breach prediction M. West¹, M. Morris² and M. Hassan³

¹ Student, University of Surrey, ² Senior Consultant, HR Wallingford, ³ Senior Engineer, HR Wallingford Editor: Craig Goff, HR Wallingford, <u>c.goff@hrwallingford.com</u>


HR Wallingford Working with water				M. West	A guide to breach prediction 1, M. Morris2 and M. Hassan3
Parametric Model	Time to Failure, $t_f(hr)$	Average breach width, $\overline{B}(m)$	Side Slopes, z (h: v)	Peak Outflow, Q_p (m^3/s)	Number of Case Studies
Froehlich (1995a, 1995b)	$t_f = 0.00254 W_w^{0.52} h_b^{-0.9}$	$B = 0.1803k_0V_w^{0.22}h_b^{0.19}$ $k_0 = \begin{cases} 1.4 & OT\\ 1.0 & P \end{cases}$	$z = \begin{cases} 1.4 & OT \\ 0.9 & P \end{cases}$	$Q_p = 0.607 V_w^{0.295} h_w^{1.24}$	1995a: 22, 1995b: 63
Walder & O'Connor (1997)				$\begin{split} Q_{p} &= a(h_{w}V_{w})^{b} \\ \text{where:} \\ a, b &= \begin{pmatrix} 0.99, 0.40 & Landslide \\ 0.61, 0.43 & Constructed \\ 0.19, 0.47 & Moraine \end{pmatrix} \end{split}$	
Froehlich (2008)	$t_f = 0.0176 \sqrt{\frac{v_w}{g h_b^2}}$	$\overline{B} = 0.27 k_0 V_w^{\frac{1}{3}}$ Where: $k_0 = \begin{cases} 1.3 & OT \\ 1.0 & P \end{cases}$	$z = \begin{cases} 1.0 & OT \\ 0.7 & P \end{cases}$		74
Xu & Zhang (2009)	$\begin{split} \frac{t_{f}}{t_{r}} &= C_{S} \left(\frac{h_{d}}{h_{r}} \right)^{0.654} \left(\frac{v_{w}^{3/s}}{h_{w}} \right)^{1.246} \\ \text{where:} \\ C_{S} &= b_{S} \\ b_{S} &= \begin{cases} 0.038 & HE \\ 0.066 & ME \\ 0.205 & LE \end{cases} \end{split}$	$\begin{split} & \frac{\bar{s}}{h_b} = 5.543 \left(\frac{v_e^{1/s}}{h_w} \right)^{0.729} e^{C_3} \\ & \text{where:} \\ & C_3 = b_4 + b_5 \\ & b_4 = \begin{cases} -1.207 & OT \\ -1.747 & P \end{cases} \\ & b_5 = \begin{cases} -0.613 & HE \\ -1.073 & ME \\ -1.268 & LE \end{cases} \end{split}$	1	$\begin{aligned} \frac{q_p}{\sqrt{gv_{p_{1/3}}^{b_{1/3}}}} &= 0.133 \left(\frac{v_{p_{1/3}}^{1/3}}{h_{w}}\right)^{-1.276} e^{C_4} \\ \text{where:} \\ C_4 &= b_4 + b_5 \\ b_4 &= \begin{cases} -0.788 & OT \\ -1.232 & P \end{cases} \\ b_5 &= \begin{cases} -0.089 & HE \\ -0.498 & ME \\ -1.433 & LE \end{cases} \end{aligned}$	75
Pierce at al. (2010)				$\begin{split} Q_p &= 0.0176 (V_w h_w)^{0.606} \\ Q_p &= 0.038 (V_w^{0.475} h_w^{1.09}) \end{split}$	87
Froehlich (2016a, b)	$t_f = 60 \sqrt{\frac{v_w}{g h_b^2}}$	$\overline{B} = 0.23k_0V_w^{\frac{1}{3}}$ Where:	$z = \begin{cases} 1.0 & OT \\ 0.6 & P \end{cases}$	$Q_p = 0.0175 k_0 k_H \sqrt{\frac{g v_w h_w h_p^2}{\bar{w}}}$ Where:	2016a: 111, 2016b: 41

Breach Modelling (Cont'd)

圙

uOttawa

Comparison 1: Two Semi-Physically Based Models vs One Parametric Model

Downstream Routing

Outflow Regime

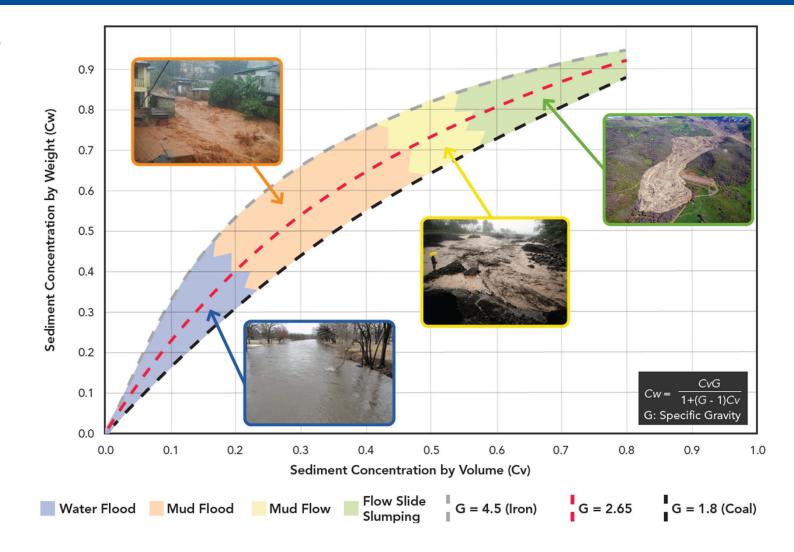


Image Source: CDA

Downstream Routing (Cont'd)

Modelling Tools

FLOW-3D°

Solving the World's Toughest CFD Problems

Useful links:

Ghahremani et al. (2022): numerical runout model paper

Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

A benchmarking study of four numerical runout models for the simulation of tailings flows

Negar Ghahramani ^{a,*}, H. Joanna Chen ^b, Daley Clohan ^c, Shielan Liu ^d, Marcelo Llano-Serna ^e, Nahyan M. Rana ^f, Scott McDougall ^a, Stephen G. Evans ^f, W. Andy Take ^g

Downstream Routing (Cont'd)

Modelling Tools

Models	Туре	Case 1A	Case 1B	Case 2A	Case 2B	Newtonian Fluids	Non-Newtonian Fluids	Computing Cost
DAMBRK	1D	Yes	Yes	-	-	Yes	-	Medium
FLDWAV	1D	Yes	Yes	Yes	-	Yes	Yes	
HEC-RAS	1D/2D	Yes	Yes	Yes	-	Yes	Recently released	
FLO-2D	2D	Yes	Yes	Yes	-	Yes	Yes	
MIKE 11 & MIKE 21	1D/2D	Yes	Yes	Yes	-	Yes	Yes	High
RiverFlow2D	2D	Yes	Yes	Yes	Yes	Yes	Yes	Medium to High
TUFLOW	2D	Yes	Yes	Yes	-	Yes	Recently released	Medium to High
Telemac-MASCARET System	2D/3D	Yes	Yes	Yes	-	Yes	Recently released	Medium to High
FLOW-3D	2D/3D	Yes	Yes	Yes	Yes	Yes	Yes	High
DAN3D	Quasi-3D	-	-	Yes	Yes	-	Yes	Not available commercially
MADFLOW	Quasi- 2D/3D	Yes	Yes	Yes	Yes	Yes	Yes	

Image Source: CDA

Downstream Routing (Cont'd)

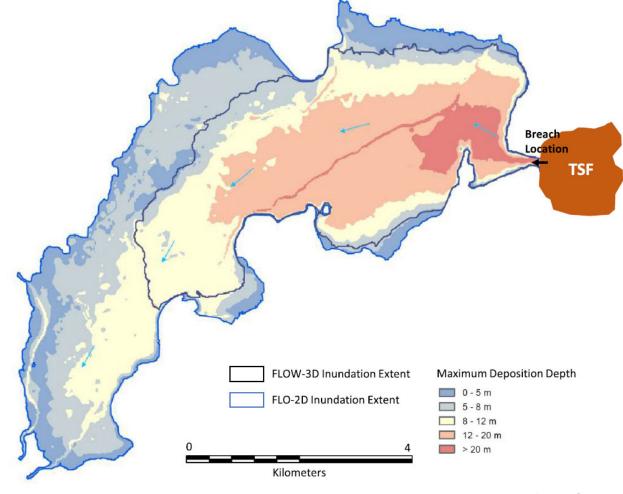


Image Source: Gildeh et al. (2020)

Fig. 10 Comparison of inundation extents between FLO-2D and FLOW-3D

Recommendations and On-going Research

- Some Recommendations...
 - Data & Data & Data & Data
 - Multidisciplinary team to tackle TDBA
 - "All models are wrong, but some are useful"
 - Uncertainties! sensitivity analysis on breach parameters (mainly B and t) and tailings rheology (mainly viscosity and yield stress)
 - Stay up-to-date

Image Source: scholarlykitchen

