

Sorption of Metals from Low -Iron Acid Mine Drainage (AMD) Using Agricultural Waste Materials Edward Abbiw

Circular Economy

West Virginia Mine Drainage Task Force Symposium 15th International Mine Water Association Congress

VOINOVICH SCHOOL OF LEADERSHIP AND PUBLIC SERVICE

- Problem?
- Small-scale gold mining in Ghana
- No wastewater treatment systems
- Low regulations (Affian et al., 2009).
- Contaminates river bodies in Ghana such Pra, Offin, Ayensu, etc. (Duncan et al., 2018)
- Water bodies are public and primary resource for villages

ISmall-scale mining by CERSGI\$2024

- Challenges!
- Discharge contain mercury and other metals
- Metals in elevated concentration are dangerous
 - High toxicity
 - Accumulation in food chain
 - Persistence in nature
- Polluted water treatment is of global concern

Figure shows the contamination of the Amoya Stream by Edward

- Making water system support life again!
- Environmentally and sustainable treatment approach?
- Low-cost treatment?
- Biosorption: agricultural byproduct to remove metals from low-iron AMD
 - Proven to be effective
 - Inexpensive
 - Easy to operate

24% food waste in 146.1 million tons MSW (USEPA, 2018)

- Biosorption technique
 - Mechanism explained by adsorption
 - Occurs at interface between solids and fluid
 - Solid-liquid equilibrium and mass transfer rate
- Species between fluid and sorbed phase
 - Isotherms-mass sorbed and equilibrium concentration
 - Physical or chemical interactions-intermolecular force

Objectives and Hypothesis

- Objectives
 - Evaluate the capacity of agricultural and waste
 - Determine the most effective biosorbent
 - Estimate pH point-of-zero charge of the biosorbents
 - Conduct experiment with "minimal" sorbent treatment
- Hypothesis
 - Small-scale gold mining leads low-iron AMD and agricultural waste is effective for removing mercury-Hg, cadmium-Cd, lead-Pb, copper-Cu, and zinc-Zn.

Literature

- Banana peel removes copper and lead at pH 5.25.4 (Vilardi *et al.*, 2018)
- Activated bamboo stem removes lead at pH 5 (Asrat *et al.*, 2021)
- Modified plantain peel sorbs copper at pH 4.36 (Garba *et al.*, 2016)
- Activated coconut coir has high sorption capacity Cu and Cd (Chauhuri *et al.*, 2010)

Methods

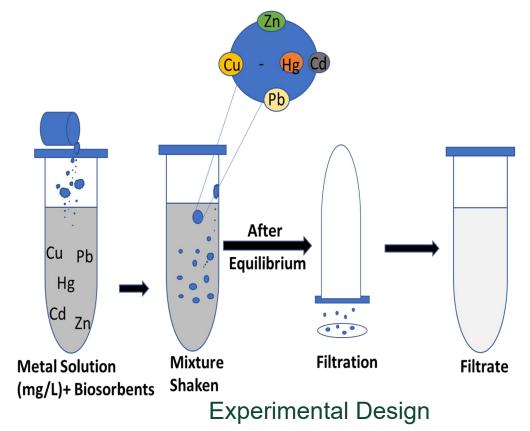
- Sheep and goat dung from local farmers in Athens, Ohio, US
- Plantain and banana bought from Walmart
- Bamboo stems from Ohio University's student farm
- Coconut coir bought from Amazon
- Waste ground and sieved through
 0.098 mm sieve

- Artificial Mine Water (AMW): Hg, Pb, Cu, Zn, and Cd from fisher scientific
- Conc. 20.42, 1.33, 1.03, 7.48, and 0.33 were prepared for the respective metals

Copper Standard

Methods

VOINOVICH SCHOOL OF LEADERSHIP AND PUBLIC SERVICE


April 23, 2024

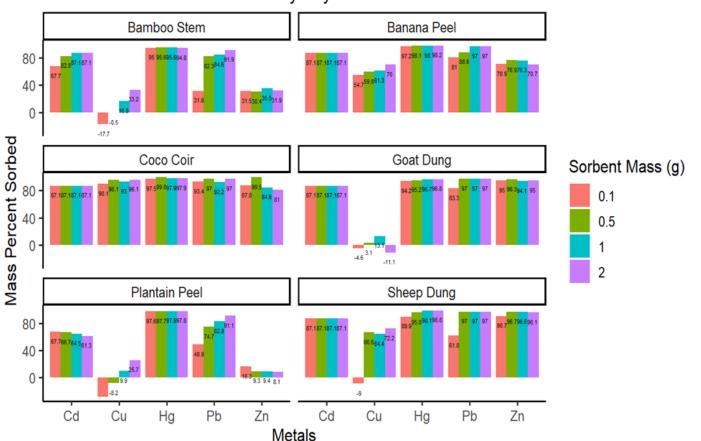
FOREVER

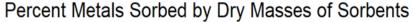
Methods

- Batch sorption at laboratory scale
- Optimized parameters: sorbent mass, concentration, and pH
- Trial 1: dry masses, 0.1, 0.5, 1, and 2 g of waste were and added to 35 mL AMW
- Mixture shaken at 120 rpm for 24hrs
- Trial 2: 0.1 and 0.5 g of coconut coir, banana, peel, and sheep dung in 5 mg/L AMW were tested at pH 4 and 8

pH-Point Of Zero Charge

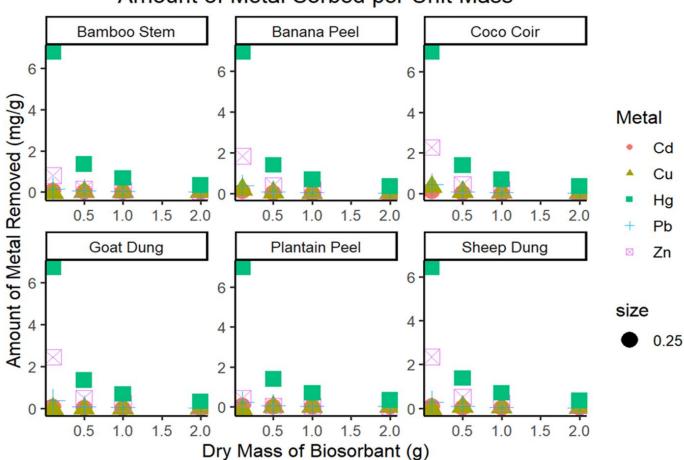
- 40 mL 0.1 M NaNO3 in ten different 50-mL and labeled, pH 2 to pH 11
- Initial pH recorded in MS excel document as pHi
- Dry mass of sorbent were added to each solution
- Mixture was shaken on a rotary agitator at 150 rpm for 24 hrs

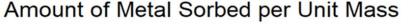

- Mixture was filtered and filtrate was analyzed for final pH
- Final pH (pHfi) was recorded
- pH pzc was obtained from (ΔpH) = (pHf-pHi) against pHi
- Graphs were plotted for each sorbent



Results

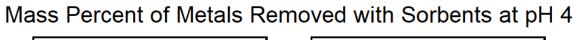
- Sorption was successful at pH 7
- Removal efficiency of Hg is relatively high > 95%
- Bamboo, goat dung, and plantain peel added Cu in some case
- Sorption efficiency of Zn by bamboo and plantain was relatively low
- Coconut coir, sheep dung, and banana peel were most efficient

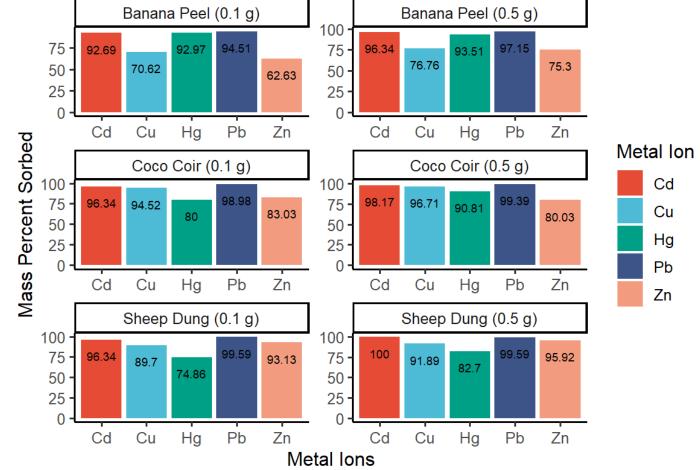




Results

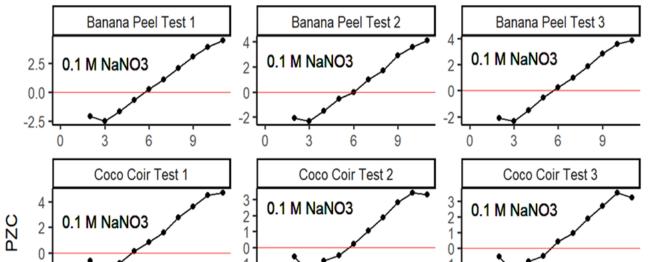
- Amount of metal sorbed per unit mass of biosorbent at pH 7
- Removal decrease asunit mass of biosorbent increases
- Maximum adsorption capacity
 - 6.43, 2.34, 0.29, 0.048, and 0.01mg/L for Hg, Zn, Pb, Cu and Cd respectively





Results

- Treatment of 0.1 and 0.5 g sorbent in 5 mg/L AMW
- 0.5 g had relatively higher removal efficiency
- 0.1 g coconut coir and 0.5 g sheep dung removed all the Cd
- All sorbent were efficient in removing Pb
- Achieved removal efficiency between 60 and 100 %



Results-pH pzc

- The pH-pzc of the sheep dung ranged between 7.18 and 7.21
- pH-pzc of coconut coir was between 4.8-5.7
- pH-pzc of sheep dung was ranged between 5.716.9
- Net surface charge of coconut coir and sheep dung could be negative to attract metals

Sheep Dung Test 2

pН

2 0.1 M NaNO3

0

9

9

9

Q

Sheep Dung Test 1

2 0.1 M NaNO3

0

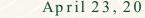
Determinatin of pH Point of Zero Charge (PZC) by Salt Addition Method

9

Sheep Dung Test 3

2 0.1 M NaNO3


0


VOINOVICH SCHOOL OF LEADERSHIP AND PUBLIC SERVICE

Summary and Application

- Sorption successful at pH 4 and pH 7
- Sorption was not successful at pH 8
- Coconut coir, sheep dung and banana peel: most efficient
- On average pH-pzc of coconut coir, sheep dung, and banana peel were respectively 5.25, 7.15, and 5.8
- pilot scale application in the future

April 23, 2024

FOREVER OHIO

Thank you!

VOINOVICH SCHOOL OF LEADERSHIP AND PUBLIC SERVICE

References

- Asrat, Y., Adugna, A. T., Kamaraj, M., & Beyan, S. M. (2021). Adsorption phenomenon of arundinaria alpina stem-based activated carbon for the removal of lead from aqueous solution. *Journal of Chemistry*, 2021, 1-9.
- Center for Remote Sensing and Geographic Information Services (CERSGIS) Small scale mining portal. Accessed April 2024
- Chaudhuri, M., Kutty, S. R. M., & Yusop, S. H. (2010). Copper and cadmium adsorption by activated carbon prepared from coconut coir. *Nature Environment and Pollution Technology*, 9(1), 25-28.
- Duncan, A. E., de Vries, N., & Nyarko, K. B. (2018). Assessment of heavy metal pollution in the sediments of the River Pra and its tributaries. Water, Air, & Soil Pollution, 229(8), 1-10
- Figueira, P., Henriques, B., Teixeira, F., Afonso, N., Pinto, J., Tavares, D., ... & Pereira, E. (2022). Potentialities of agro-based wastes to remove Cd, Hg, Pb, and As from contaminated waters. Water, Air, & Soil Pollution, 233(3), 78.
- Garba, Z. N., Ugbaga, N. I., & Abdullahi, A. K. (2016). Evaluation of optimum adsorption conditions for Ni (II) and Cd (II) removal from aqueous solution by modified plantain peels (MPP). Beni-Suef University Journal of Basic and Applied Sciences, 5(2), 170-179.
- Vilardi, G., Di Palma, L., & Verdone, N. (2018). Heavy metals adsorption by banana peels micro-powder: Equilibrium modeling by non-linear models. Chinese Journal of Chemical Engineering, 26(3), 455-464.

April 23, 2024

VOINOVICH SCHOOL OF LEADERSHIP AND PUBLIC SERVICE