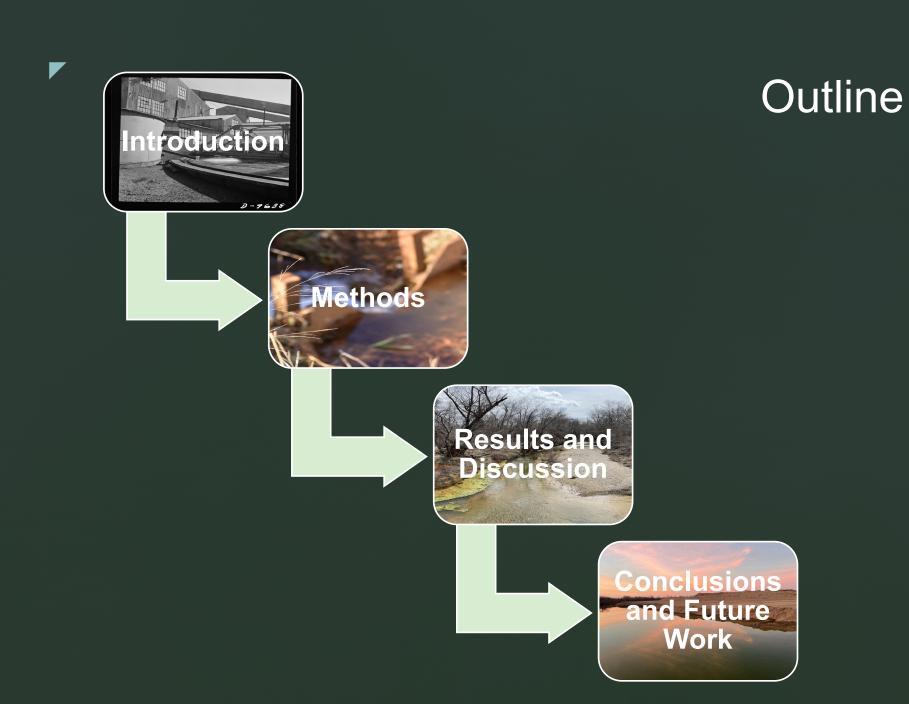


Justine I. McCann and Robert W. Nairn


West Virginia Task Force and

International Mine Water Association Meeting

April 23, 2024

Metal Loads Accounting at a Legacy Mine Site: The Tar Creek Superfund Site, Oklahoma, USA

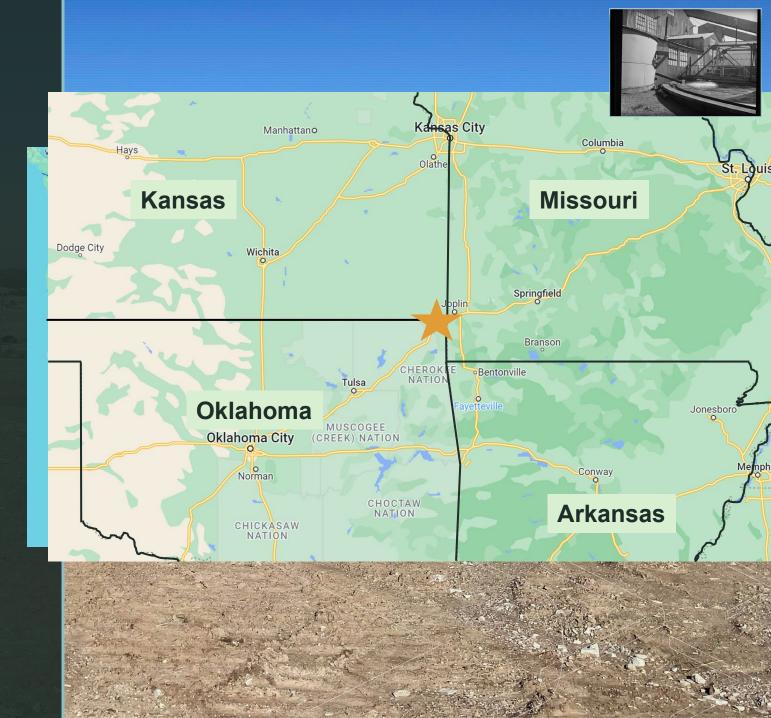

Introduction

Photo courtesy of Nick Shepherd

Introduction

- Legacy mining and industrial sites
 - Complexity
 - Primary and secondary contamination sources
 - Limited funding
- Tri-State Mining District
 - Mine waste on surface
 - Subsurface mine pool

Tri-State Lead-Zinc Mining District

Mining

- 19th and 20th centuries
- Missouri, Kansas, Oklahoma

Closure

- Late 1960s
- Mine drainage in late 1970s

EPA

- National Priorities List
- Addressing different waste streams

EPA Operable Units

Groundwater

- Diversion of Lytle Creek
- Surface water deemed "irreversibly damaged"
- Plugging of potential threats to drinking water

Mine, Mill, and Smelter Waste

- Removal of waste
- Reuse programs

Surface Water and Sediments

- Remedial investigation ongoing
- Interim measures

Previous Remedial Work

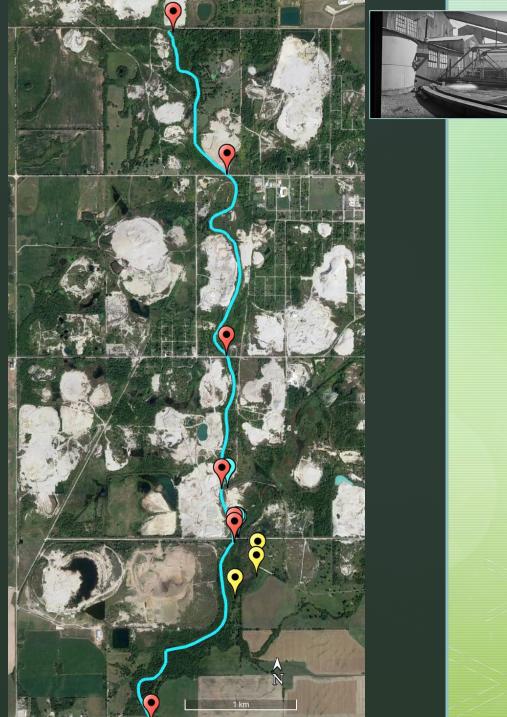
Artesian discharges

- Passive treatment
- Identifying inflows and outlets
- Surface piles of mine waste
 - Mine waste runoff study
 - Sieving operations
 - Dig and haul
- Sediment and surface water
 - Removal of mine waste from stream

Research Questions

- Where can remedial efforts have the greatest impact?
- What sets those areas apart?
- How can sources of metals pollution be addressed sustainably?

Photo courtesy of Brandon Holzbauer-Schweitzer


Metals Load Accounting in Tar Creek

Hypothesis

 Mine drainage seeps, when flowing, contribute more metals loading in Tar Creek than interactions with mine waste

Objective

 Quantify loading of metals from different potential source areas within mine-impacted stream

Methods

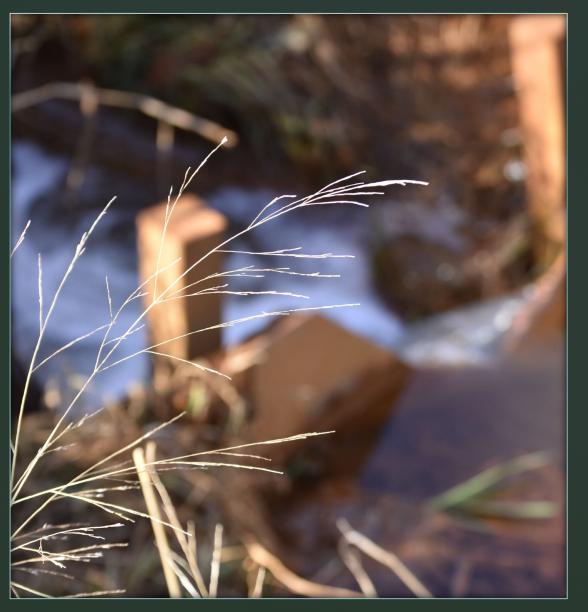


Photo courtesy of Maria Nairn

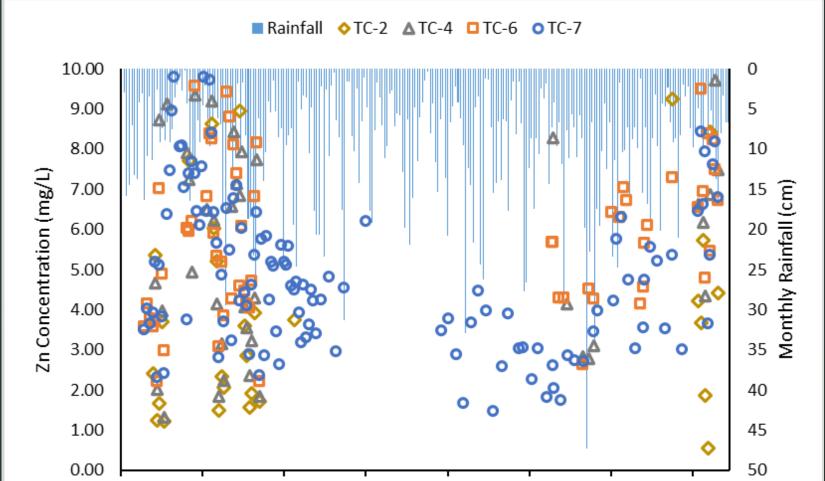
Stream Sampling Sites

Sample Collection and Analysis

- Flow measurements -- acoustic doppler velocimeter
- Metals concentrations via ICP-OES
- Loads = concentrations x flows
- Expected load = upstream load + tributary load

Photo courtesy of Dayton M. Dorman

Results and Discussion



Long-Term Zinc Trends

Mar 23

Jun-20

April Decila Sepil

14

Jan-04

141.09

002.06

Metals Load in Stream

 Conditions neither especially dry nor wet

- Increase at most sites
 - Decrease at TC-3 -- wetland

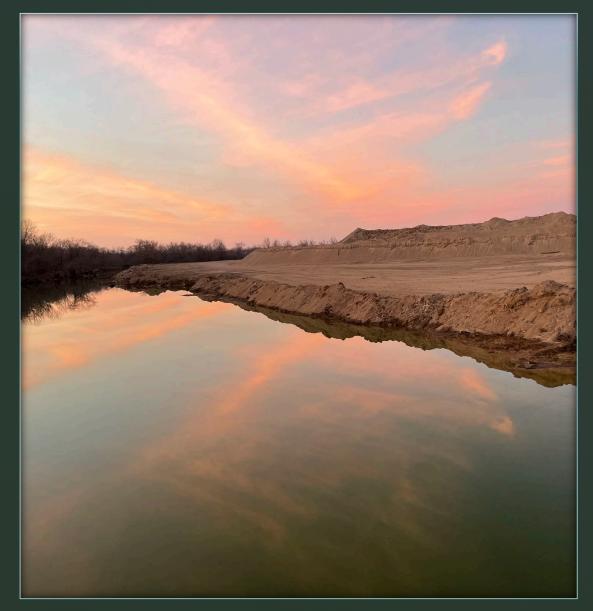
Site	Measured Zn Load – Expected Zn Load (mg/min)				
	Mar	Apr	May	Oct	
TC-2	14.5	6.4	12.8	2.5	
TC-3	-2.0	5.1	-4.4	-2.7	
TC-4	8.6	-0.2	26.8	6.0	
TC-5	17.1	15.5	4.6	3.0	
TC-6	5.7	6.9	11.9	0.5	
TC-7	8.7	-8.8	1.4	5.2	

Metals Load in Stream, Continued

 Samples taken right after rainstorms

- August sampling:
 - Peak flow between TC-2 and TC-3
 - TC-4 sampled after upstream samples

Site	Measured Zn Load – Expected Zn Load (mg/min)				
	Jul	Aug	Jan		
TC-2	42.2	40.4	13.9		
TC-3	-15.3	-59.1	-9.5		
TC-4	86.1	87.2	20.6		
TC-5	22.1	-73.7	13.9		
TC-6	2.7	4.4	11.7		
TC-7	-84.9	124.1	34.3		


Metals Load in Stream, Continued

 June, September, November, and December drier than long term average

- No flow at TC-2 and TC-3 in later months
 - Zinc load at TC-4 in these months just measured load
- TC-1 not sampled in September

Site	Measured Zn Load – Expected Zn Load (mg/min)				
	Jun	Sep	Nov	Dec	
TC-2	-0.01	-	-	-	
TC-3	0.03	-	-	-	
TC-4	0.75	0.4	0.4	1.0	
TC-5	0.9	-0.1	0.2	-0.5	
TC-6	-1.7	-5.3	-6.2	-12.7	
TC-7	-2.6	-0.9	1.0	1.6	

Conclusions and Future Work

Nonpoint Source Tracking

- Neither dry nor stormy conditions, increases occur upstream of TC-2, TC-4, TC-5, and TC-6
- Wet conditions, increases occur everywhere but TC-3
- Dry conditions, increases occur mostly at TC-2
- Initial hyporheic zone investigations at all sites



Future Studies: Perched Groundwater and Stormwater Runoff

- Pile north of TC-1
 - Relatively intact
- Area north of TC-2
 - Site of current interim measure
- Bases north and south of TC-4
 - Processed for asphalt aggregate
- Area south of TC-6
 - Fine tailings impoundment

From Cope et al. 2008

Looking Forward

- Identify long-term post-remediation patterns
- Guide future remedial action
- Gain insight into stream dynamics

Photo courtesy of Maria Nairn

Acknowledgements

- Dr. Nairn and dissertation committee
- WVTF & IMWA meeting organizers
- CREW
- Quapaw Nation

- Oklahoma Department of Environmental Quality
- Grand River Dam Authority

Photo courtesy of Brandon Holzbauer-Schweizer

Thank you!

Questions?