

$$Fe^{3+} + 3H_2O = Fe(OH)_3(s) + 3H^+$$

pH = -log[H+]

Caustic Soda

NaOH +
$$H^+$$
 = Na^{2+} + H_2O

Base Acid

* Bases prevent H⁺ from increasing in concentration and causing the pH to drop

Three CO₂ Species in Water Carbon)

(Total Inorganic

$$\mathbf{O}_{2(g)} + \mathbf{H}_2 \mathbf{O} = \mathbf{H}_2 \mathbf{O} + \mathbf{O}_{2(aq)}$$

$$\mathbf{CO}_{2(g)} + \mathbf{H}_2\mathbf{O} = \mathbf{H}_2\mathbf{CO}_3$$

$$H_2CO_3 = H^+ + HCO_3$$

Solid Water (Ice)

Liquid Water (Fluid)

Water Vapor (Gas)

TIC = H₂CO_{3(aq)} + HCO₃² + CO₃²Total Water= Ice + Liquid + Vapor

Total Inorganic Carbon (TIC) is a summation of the three CO₂ species dissolved in water

$$\mathbf{H_{XO_3}} = \mathbf{H^+ + HCO_3^-}$$

$$2H^{+} + Ca(OH)_{2} = Ca^{2+} + 2H_{2}O +$$

$$H_{3}^{\bullet} = H^{+} + CO_{3}^{2}$$

$$2H^{+} + Ca(OH)_{2} = Ca^{2+} + 2H_{2}O +$$

Enhanced Decarbonation

- * Decarbonation is focused on reducing H₂CO₃ concentration by outgassing as CO_{2 (gas)}
- * Enhanced Decarbonation is focused on lowering the concentration of **both** H₂CO₃ and HCO₃
- * Two Step Process
 - 1. Transform HCO_3^- to $H_2CO_3^-$
 - 2. Decarbonate H₂CO₃

$$CO_{2(g)} + H_2O = H_2CO_3$$

 $H_2CO_3 = H^+ + HCO_3^-$

$$Fe^{2+} + 2.5H_2O + .25O_2 + = Fe(OH)_3 + 2H^+$$

Calcium Mass Balance to determine Hydrated Lime Reduction

 $286.7 - 194 = 92.2 \text{ mg/L Ca}^2 + \text{ added}$ 92.2 mg/L $Ca^{2+} = 167 \text{ mg/L } Ca(OH)_2 \text{ Added}$

~2.36 tons/day (30% reduction/annual cost savings of 60K)

Conclusion

