

Innovative Data Collection and Management Strategies for Improved Water Treatment Efficiency

Shannon Zahuranec, Tom Meuzelaar, Alice Alex, Jim Jonas

Presentation Outline

- 1. Introduction to Automated Water Treatment Systems
- 2. Challenges with Traditional Water Treatment
- 3. The Automated Workflow
- 4. Technological Components of Automation
- 5. Case Study: Implementation and Impact
- 6. The Future: Digital Twin and Beyond

Presentation Outline

- 1. Introduction to Automated Water Treatment Systems
- 2. Challenges with Traditional Water Treatment
- 3. The Automated Workflow
- 4. Technological Components of Automation
- 5. Case Study: Implementation and Impact
- 6. The Future: Digital Twin and Beyond

Evolution of Water Treatment Systems

Traditional Methods

- Manual sampling
- Visual inspections
- Periodic laboratory analysis (long analysis times)

Technological Advancements

- Sensor technologies
- Microcontrollers for real-time monitoring

Shift to Automation

- Adoption of automated data collection
- Real-time alerts
- Cloud-based data management

Enhanced Analytics

- Advanced data processing techniques
- Machine learning for predictive insights

Towards Digital Twins

- Fully integrated systems
- Predict, optimize, manage operations remotely

() 9 K 9 K 9 L 6 D ^m 9 H 9 L 6 9 L 6 9 K 9 L - 9 L (7 K

Overcoming Obstacles

Manual Sampling Limitations

High labor intensity and slow response times

Data Collection Gaps

 Inconsistent, infrequent data leading to suboptimal monitoring and management

Analysis Delays

• Long turnaround times for laboratory results impede timely decision-making

Operational Inefficiencies

 Manual adjustments and lack of real-time data lead to inefficiencies and increased costs

Staff Training Challenges

 Continuous need for highly skilled personnel to manage complex water treatment systems

Automated Water Treatment Workflow

Data Collection

 Automated, sensor-based monitoring at key points

Alerts & Alarms

• Immediate notification of system upsets for rapid response

Cloud Management

• Secure, scalable data storage, and advanced analytics

Data Analysis

• From raw data to actionable insights with AI & machine learning

Real-time Decision Making

 Intelligent guidance for optimal water treatment

Presentation Outline

- 1. Introduction to Automated Water Treatment Systems
- 2. Challenges with Traditional Water Treatment
- 3. The Automated Workflow
- 4. Technological Components of Automation
- 5. Case Study: Implementation and Impact
- 6. The Future: Digital Twin and Beyond

When is Higher Frequency Data Useful?

Varies from system to system

Any temporary condition that deviates from the ideal in passive to active systems

Examples

• Variable flow- diurnal freshet, multiple influent

• Variable chemistry

"Passive treatment of circumneutral mine drainage from [undisclosed]" Moore et al., 2022

Data Collection

Traditional Data Collection

- Manual, single time interval, requires laboratory analysis
- Multiple data types: spreadsheets, legacy data, images, audio and video

The Modern Solution

Auto-Samplers

• Reduced labor, multiple time intervals, requires laboratory analysis

Sondes

• Calibration/maintenance only, high frequency, no laboratory analysis, limited to bulk parameters

Multi-element Sensors

• Calibration/maintenance only, high frequency, no laboratory analysis, all major and trace elements ("entire periodic table")

Data Management at Sampling Point

- Processing at data collection point
- Bandwidth
- Latency
- Economics
- Reliability
- Privacy
- Decisions at the edge? (PLC etc.)

Telemetry - Upload to Cloud

- Hardwire
- Radio frequency (Wifi, ISM bands)

- Cellular
- Satellite

Edge Computing

INTERNET OF THINGS

Data Management in the Cloud

Benefits of Cloud

- All data in one place
- All data types allowed
- Real-time data ingestion, cleaning, analysis
- Platform agnostic (EQuIS, MonitorPro, SQL)
- Dashboarding
 - Standard: Power BI, Tableau
 - Custom: Python
- Intelligence and automation:

- Recommendations
- Decisions
- PLC
- \rightarrow Analytics (machine learning)

Data Analysis

Objectives

- Meet discharge standards
- Optimize plant efficiency
- Predict failures

Data Cleaning Pipeline

- Rule-based data validation (detection limits/ outliers)
- Missing data imputation
- Standardization of units and format
- Data transformation

Data Analysis

- One or two parameters
 - Simple visualization: monitor trends (pH, lime etc.)
 - Forward prediction: anticipate future system conditions
- Multiple parameters machine learning:
 - Identify root causes
 - Optimize system performance
- Evaluate testing scenarios

Actionable Insights \rightarrow Decision Making

Operator tools:

- Alarms/monitors
- Reports
- Dashboards

Data analysis outcomes:

- System failure predicted
- System not running optimally

Operator decisions:

- Change dosing/reagent
- Reconfigure/design treatment system
- Adjust feed stream
- Setup and program PLC

What if it doesn't work?

• Data collection feedback loop

Presentation Outline

- 1. Introduction to Automated Water Treatment Systems
- 2. Challenges with Traditional Water Treatment
- 3. The Automated Workflow
- 4. Technological Components of Automation
- 5. Case Study: Implementation and Impact
- 6. The Future: Digital Twin and Beyond

Case Study

Reviving a Semi-Passive System

Challenges

- Seasonal water volume fluctuations
- Manual operation
 inefficiencies
- Maintaining trained professionals for remote operation

Solution - Automation

- Real-time monitoring and control
- Integrated sensors
- Cloud-based data management
- Dashboarding

Case Study: Reviving a Semi-Passive System

Case Study: Reviving a Semi-Passive System

Case Study: Reviving a Semi-Passive System

Automation in Action: Case Study Results

System Stability

• Automation countered fluctuating impacts, stabilizing treatment performance

Compliance Achievement

 Automated controls ensured adherence to environmental standards

Operational Advantages

 Real-time adjustments reduced need for manual oversight, optimized reagent use

Not a replacement for experienced operator

Digital Twin: The Future of Water Treatment

Virtual Replicas

 Digital Twins mirror physical systems, enabling simulation and analysis

Predictive Oversight

 Anticipate system behavior, enhancing decision-making and compliance

Strategic Management

 Use historical and real-time data for long-term system optimization

Concluding Remarks: Path Forward

Enhanced Control

• Automation delivers precise, real-time management and optimization of water treatment systems

Cost & Efficiency

- Significant savings and performance gains from integrated technologies
- Assists experience operators with more informed decisionmaking tools - will not replace the experienced operator

Future Vision

- The Digital Twin: future for predictive, sustainable water management
- Aspirational yet increasingly attainable

Invest in Innovation

In the quest for sustainable water management, technology is not just a tool but a bridge to the future

