

Electrolytic manganese removal from acid rock drainage

Sarah Doyle¹, <u>Linda Figueroa</u>²

1: Itasca Denver Inc.; 2: Colorado School of Mines

Mine Drainage in Colorado

Photo: CDPHE & DNR, Colorado Abandoned Mines Water Quality Study Data Report - June 2017 https://www.colorado.gov/pacific/cdphe/wqmining

Potential Metal-Mine Drainage Hazards in Colorado

Map prepared by Colorado Geological Survey

Manganese Occurrence

- Manganese oxides are common mineral phases
 - Well known scavengers of metals
 - Chemically active redox and pH sensitive
- In mine drainage, acidic conditions mobilize Mn
 - Typically <50mg/L
 - up to 259 mg/L at Gilson Gulch in Idaho Springs (Holm and Crouse 2009)

Mn Removal from ARD

Mn removal at high pH occurs over wide Eh range

Mn removal at low pH requires high Eh

Electrochemical Advantages over Alkaline Treatment

Electrochemical Treatment Advantages

- Reduced chemical costs
- Elemental and condensed metal forms
- Potential for recoverable product
- Voltage requirement is low

Treatment Process →

Alkaline Treatment Disadvantages

- Chemical costs
- Difficult to dewater sludge
- Metals not easily recovered
- Sludge requires disposal

Electrolysis cell (system used)

Electrocoagulation (not the system used)

Goal: Improve Electrolytic Metal Removal from ARD

Previous Electrolytic Mn Removal from ARD

Factor	Macingova et al. 2015
Voltage (V)	2.3-2.9
Current (mA)	1000-1600
Anode material	Platinum
Temperature, °C	90°C
рН	0.5-1.0

Methods

Lab Reactors

- Clear PVC/acrylic plates
- Glass Beaker
- Cathode (Metal reduction)
 - Cu
 - Metal composite
- Anode (O₂ evolution)
 - Carbon felt
 - Carbon cloth
 - Ti/IrO₂-Ta₂O₅ mesh

Mine Water

- Argo Tunnel and Virginia Canyon
- Synthetic

Analysis

- ICP
- SEM EDS

Mine Waters "On-tap" at Argo Tunnel WTP Idaho Springs, Colorado

Analyte	Virginia Canyon (mg/L)	Argo Tunnel (mg/L)
Al	49	16
Cd	0.31	0.11
Cu	5.9	3.1
Fe	1.9	115
Mn	75	82
Zn	70	42
Sulfate	1885	2009
рН	3.5	3.0

Performance Considerations

- Sequential metal removal
- Electrode composition
- Mine water composition
- Metal deposition
- Efficiency

Sequential Metals Removal

Synthetic Mine Water (CuSO₄ and ZnSO₄)

Phase 1: Copper Removal (2V) Phase 2: Zinc Removal (5V)

Sequential metal removal

Virginia Canyon Water

---Removal ----Voltage

Metal Removal from Low Iron Water

Virginia Canyon Water

		Anode Type			
Analyte	Initial Conc.	Carbon Felt	Ti/IrO ₂ -Ta ₂ O ₅		Max. % Removal
		4V	2.8V	5V	
Al	49	27	38	28	44%
Cd	0.31	0.076	0.066	0.035	89%
Cu	5.9	1.3	1.3	0.84	86%
Fe	1.9	0.6	0.45	0.22	88%
Mn	75	40	11	5.3	93%
Pb	0.031	<0.005	<0.005	<0.005	84%
Zn	70	53	67	41	41%
рН	3.5	2.9	2.6	2.5	

- >80% reduction in dissolved
 Cd, Cu, and Pb concentrations
- Mn removal 50%-90%
- pH decrease
- Average current efficiency 20%

Metal Removal from High Iron Water

Argo Tunnel Water

Analyte	Initial Conc.	Copper Cathode Ti/IrO ₂ -Ta ₂ O ₅ Anode 3.5V	% Removal
Al	16	13	20%
Cd	0.11	0.030	73%
Cu	3.1	1.2	60%
Fe	115	55	52%
Mn	82	87	0%
Pb	0.033	<0.015	55%
Zn	42	41	2%
рН	3.0	2.6	13%

Mn Removal Batch vs Flow-through

0 +

10

20

Batch Tests

Flow-through Tests

Metals Deposition on Cathode and Anode

- Cathode
 - Copper
 - Zinc
 - Aluminum
- Anode
 - Manganese
 - Aluminum
- Titanium based electrodes
- Solids Analyzed using SEM-EDS

SEM-EDS =Scanning Electron Microscopy Energy Dispersive X-ray Spectroscopy

Manganese deposition on carbon electrode

- Anode: carbon cloth coated in Mn and oxygen (>90 % MnO₂)
- Cathode: Zn, Cu, and Pb (not shown)

Oxidized manganese coating on carbon cloth fibers

Clean carbon cloth fibers

Current vs. Applied Voltage

Efficiency

Metal Reduction Efficiency and Power

- Higher metals reduction efficiency with lower currents.
- Current is affected by mixing, electrode area, and applied voltage.
- Increase in voltage results in minimal increases in metal reduction.

Summary and Implications

- Mn removed at pH 3 on anode
 - Up to 95%
- Concurrently Metals Removed at Cathode
- Electrolytic methods may:
 - Reduce reagent use
 - Reduce sludge volume
 - Provide Mn oxide sorbent
- Methods are more cost-effective than previous studies
- Pretreatment needed for iron rich water
- Optimization needed

Acknowledgements

Colorado Department of Public Health and the Environment

Professor James Ranville, Colorado School of Mines

TAILINGS CENTER

An Industry-University academic hub to advance research, education and training

Founding Members

Stantec

lundin mining

