

Myriam De Ladurantaye-Noel, c Laliberté

WYTE WAYNAMA

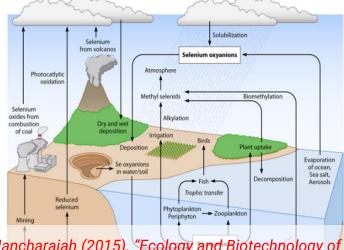
Sessi

عے, 3:10 pm - 5:00 pm

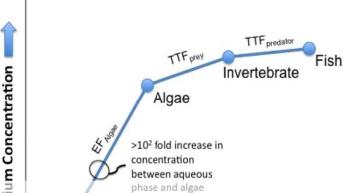
WATER TECHNOLOGIES

AGENDA

- 1. Why remove selenium?
- 1. How to remove selenium?
- 1. Introducing Tracer™ Se
- 1. Performance

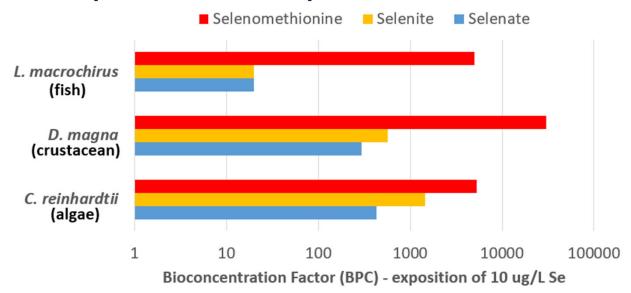


Selenium persists in the environment


- Selenium evolves in the environment
- Impacts complex to evaluate

Selenium is absorbed by plants / animals

- Selenium bioaccumulates
- Selenium biomagnifies


Nancharaiah (2015). "Ecology and Biotechnology of Selenium- Respiring Bacteria", Microbiology and molecular biology reviews. Vol. 79, No. 1, pp. 61-79.

Environment and Climate Change Canada. "Selenium Aquatic Environment", presented during public hearin of a panel review on Water Topic

Environmental Compartment

Selenium speciation impacts on its absorption

Besser, John M., Timothy J. Canfield and Thomas W. La Point. 1993. "Bioaccumulation of organic and inorganic selenium in a laboratory food chain". Environmental Toxicology and Chemistry: An International Journal, 12, no 1, 57-72.

High selenium concentration results in:

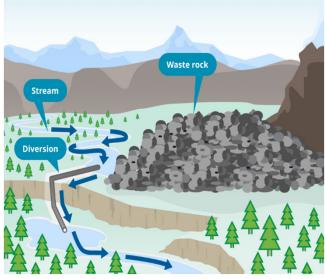
- Reproductive defects
- Growth deformities
- Mortality

Luoma, S.N. (2009), "Emerging Opportunities in Management of Selenium Contamination", Environmental Science & Technology, Vol. 43, No. 22, pp. 8483-8487.

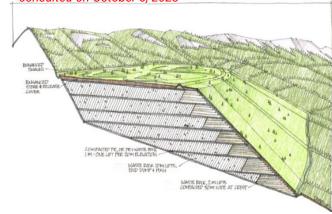
Davis, E.A. (1988), "The biological consequences of selenium in aquatic ecosystems", California Agriculture, January-February (pp. 18-29)

How to Remo Selenium?

Removal at the source - Mitigation

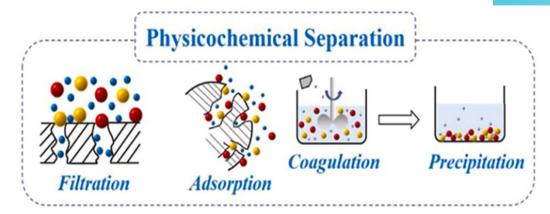

Diversion of the water

Containment of Se containing rocks

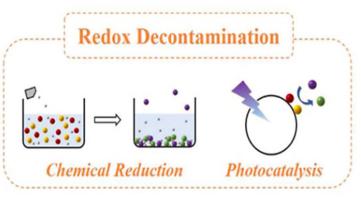

- Prevent oxidation
- Prevent solubilization

When none of these strategies work or it is too late:

Need to remove selenium from the water


British Columbia Water Quality Hub, "Water treatment strategies", https://elkvalleywaterquality-bcgov03.hub.arcgis.com/pages/water-treatment, consulted on October 6, 2023

North Coal - Michel Coal Project, "Water protection", https://northcoal.ca/michel-coal-project,consulted on October 10, 2023


How to Remove Selenium

Different ways, different challenges

FROM: Li, T. (2022), "Treatment technologies for selenium contaminated water: A critical review", Environmental Pollution, Vol. 299, No. 15.

Se(IV)
Se(VI)
Se⁻²
Se⁰
H₂O
Coagulant /Reducing agent

Comparison of Technologies

Biological treatment is in commercial use

- Kinetics are slow, so systems are expensive
- Toxicity is a concern
- Sludge management (Se⁰)
- Post-treatment (advanced oxidation) is possible, but...

Physico-chemical treatment has not found wide acceptance

- No organo-selenium production
- Membranes and IX work well, but it just moves the selenium; concentrate / brine management
- Harder to apply in large scale applications

Comparison of Technologies- Biological

	Wetlands	Saturated Rock Fill (SRF)	MBBR	ABMet (biofilter)
Pre/ Post treatment requirement	None; however does require periodic maintenance	TSS removal	NO ₃ - removal TSS removal	TSS removal
Inhibitors	None	high NO ₃ -, metals	NO ₃ -, metals	high NO ₃ -, metals
Reject	Excess biomass to be removed	None during operation	Biological sludge (Se ⁰)	Biological sludge (Se ⁰)
Good for	Site remediation No chemical use	Low OPEX	Proven techno	Proven techno, low Se (with UF) < 2 ppb
Limitations	Low flows applications (high footprint) Need site protection	Se management once SRF is filled and biomass dies?	Higher Se _{diss} (10 ppb) Se _{org}	Sensitive to flow variation
CAPEX OoM (USD) (DB: 6,000 m³/d, no pretreatment, with sludge management)	No information Passive treatment	\$22 M	\$36 M	\$24 M

Comparison of Technologies- Physico Chemical

	Ferric precipitation	Membrane	lon exchange	Zero Valent Iron (ZVI)
Pre/ Post treatment requirement	Se transformation to Se ⁺⁴	Hardness, metal, TSS removal	Competing ions, TSS removal	Competing ions, TSS removal Post treatment for Fe and NO ₂ - removal
Inhibitors	None	-	Similar ions (SO ₄ -2, NO ₃ -)	Nitrates, other oxidizers, passivation
Reject	Ferric sludge	Concentrate (++)	Brine (+)	BW water / ferric sludge (column vs mixed tank)
Good for	Se ⁺⁴ containing waters	Ultra clean effluent, low Se	Polishing when no SO ₄ -2	Low NO ₃ - concentrations
Limitations	Selenite containing waters	Scaling potential	Competing ions, flow variation	Competing ions, passivation of media, plugging of column
CAPEX OoM (USD) (DB: 6,000 m³/d, no pretreatment, with sludge management)	\$5 M	\$82 M	\$45 M	\$30 M

Comparison of Technologies- Most Versatiles

	ABMet (biofilter)		Membrane	Tracer™ Se (HYBRID)
Pre/ Post treatment requirement	TSS removal		Hardness, metal, <u>TSS</u> removal	None
Inhibitors	high NO ₃ -, metals			metals
Reject	Biological sludge (Se ⁰)		Concentrate (++)	Metallic Biological sludge
Good for	Proven techno, low Se (with UF) < 2 ppb		Ultra clean effluent, low Se	Flow variation, NO ₃ -+ metals
Limitations	Sensitive to flow variation		Scaling potential	Technology Readiness
CAPEX OoM (DB: 6,000 m³/d, no pretreatment, with sludge management)	\$24 M		\$82 M	\$8 M

Selenium Removal: What's Best

Many options are available, the selection must consider:

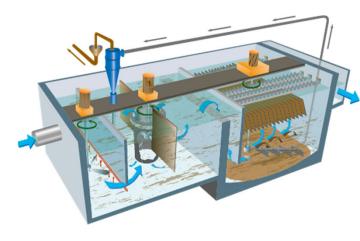
- Flow
- Se speciation
- Water composition (inhibitors)
- Sensitivity of receiving body (organo-selenium)
- Rejects management possibilities
- Footprint
- Regulators

There is not one perfect option, and the best option will vary according to each site.

Introduction to TracerTM Se

Introduction to TracerTM Se

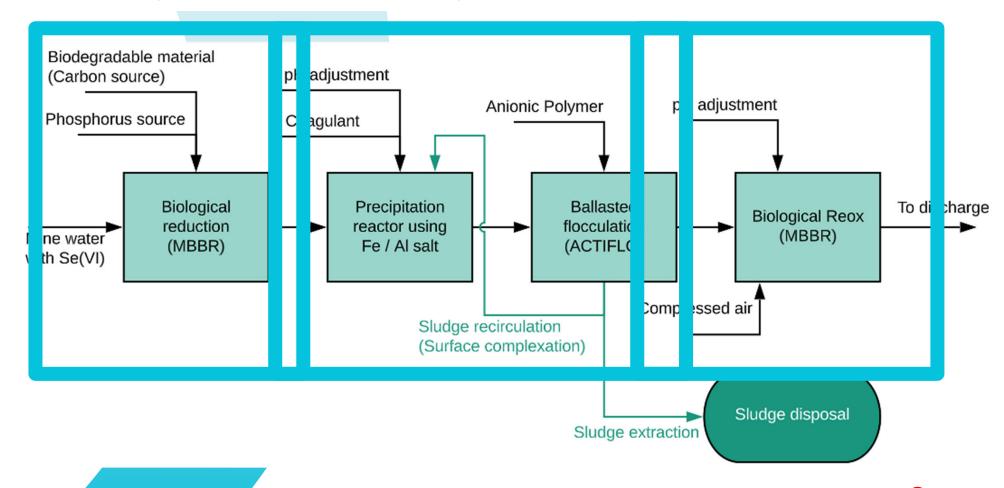
All-in-one process:


- Nitrate removal
- Metals and oxyanions removal (Se⁺⁴)
- TSS removal (Se_{part} + Se⁰)
- Reox (detox + Se_{org})

Concept based on proven / robust technologies

- Fixed film Bioreactor (MBBR)
- Ballasted flocculation (Actiflo)

AnoxKaldnes™ MBBR

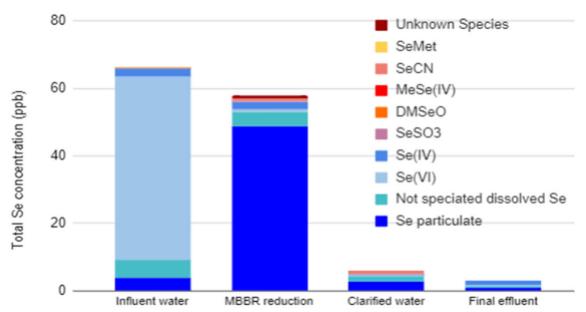


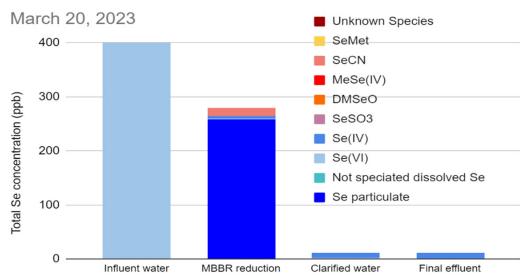
Actiflo

Biological reduction of Se⁺⁶ to Se⁺⁴ precipitation using Se⁺⁴ + Se adsorption on biom; surface complexation

Biological oxidation of residual Se to Se⁺⁶

Performance TracerTM Se

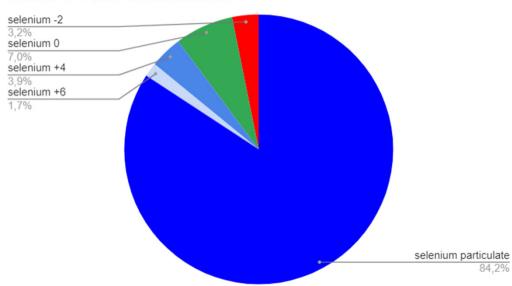



Performance

Please refer to technical paper for the complete discussion on performances

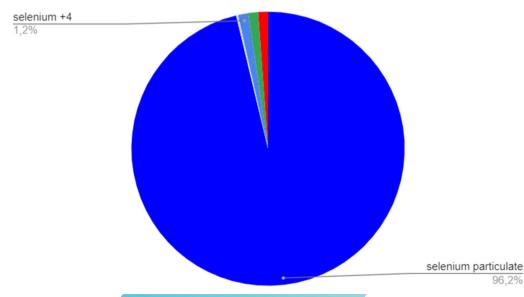
Total Selenium Concentration Repartition

Phase 1- $Se_{in} = 60 ppb$


Phase 2- Se_{in} = 350-400 ppb

Performance

Please refer to technical paper for the complete discussion on performances

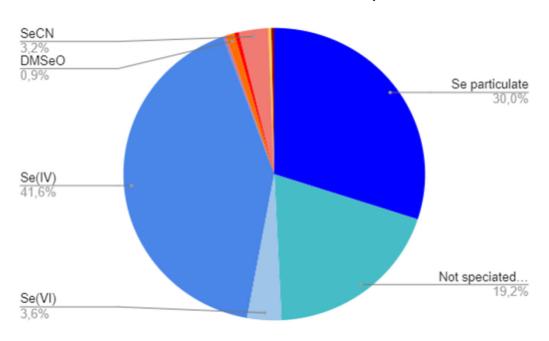

Se removal mechanisms- biological reduction effluent quality

Phase 1- After denitrification

Phase 1- $Se_{in} = 60 ppb$

Phase 2- After denitrification

Phase 2- Se_{in} = 350-400 ppb

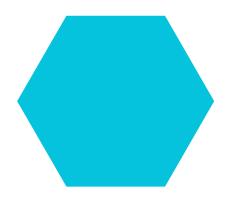

Performance

Please refer to technical paper for the complete discussion on performances

Speciation of selenium at **final effluent**

Final Effluent

Unknown Species



Phase 1- $Se_{in} = 60 ppb$

Se(VI) Se(IV) 94,2%

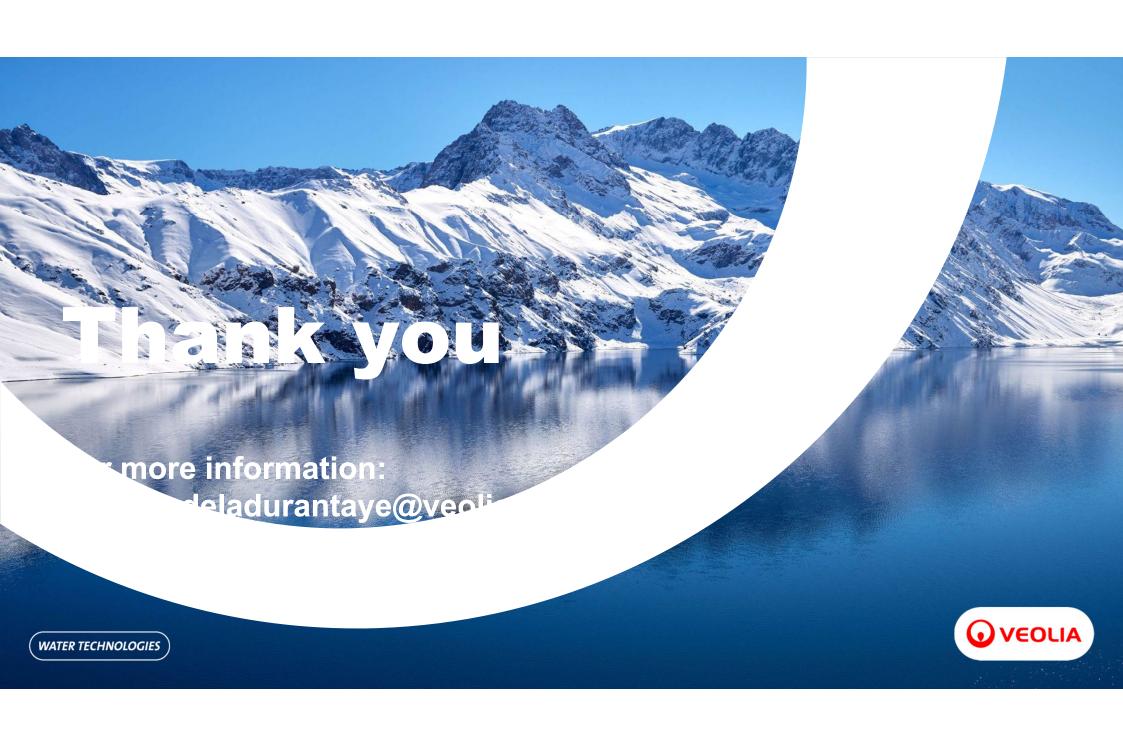
Phase 2- Se_{in} = 350-400 ppb

TracerTM Se Performance Discussion

Good performance with Se_{in} < 400 ppb

Total Se dissolved < 5 ppb

Low final organic concentrations


Total Se Organic < 0.25 ppb

Take Away

- Importance of Se removal
- Many options are available, but none are universal
- Tracer[™] Se: Combination of proven biological and physico-chemical treatments allowing Se_{diss} < 5 ppb

