Using State Point Analysis and Settling Flux Theory to Design and Operate Mine Water Treatment Clarifiers

Harley Schreiber
Jaron Stanley, Mike Chambers
WesTech Engineering, LLC

Topics

Explain State Point Analysis

Show application for sizing an aluminum removal treatment process

Use state point to explain operating challenges of an operating iron precipitation process

Conclusions – Lessons learned

Municipal Activated Sludge Process

Mine Water Treatment

State Point Development

$$Solids\ Flux = \frac{Flowrate(\frac{m^3}{h})*Concentration(\frac{kg}{m^3})}{Area,(m^2)} = \frac{kg/h}{m^2}$$

Settling Flux = Settling Rate
$$\left(\frac{m}{h}\right) * Concentration\left(\frac{kg}{m^3}\right) = \frac{kg/h}{m^2}$$

Settling Flux = Settling Rate
$$\left(\frac{m}{h}\right) * Concentration\left(\frac{kg}{m^3}\right) = \frac{kg/h}{m^2}$$

$$Net upward flux = \frac{Q * X}{A}$$

Straight Line passing through the origin with slope = Q/A

Net Solids Flux =
$$\frac{(Q + Q_{Rec.}) * X)}{A} - \frac{(Q_{Rec.})X_i}{A}$$

Straight Line \rightarrow Slope = -Q_{Rec}./A , Y intercept = (Q + Q_{rec.})/A = Total Solids Loading

State Point Diagram

State Point Diagram

State Point Diagram

- Precipitation of about 15 mg/L of Aluminum hydroxide
- Scale-up factor of 0.5 applied to flux settling curve
- Good supernatant clarity at 0.9 kg/m³ feed concentration

"Thickening Failure" will occur

"Thickening Failure" Corrective Options

No Corrective Action

- Feed concentration decreases
- Underflow concentration decreases

"Thickening Failure" Corrective Options

1. Increase Clarifier Diameter

- State point and underflow concentration unchanged
- Capital cost increases

"Thickening Failure" Corrective Options

2. Increase flocculant dosage

- State point and underflow concentration unchanged
- Operating cost increases

"Thickening Failure" Corrective Options

3. Reduce recycle flow rate

- Underflow concentration unchanged
- Reduced recycle pumping costs
- Minimal change in state point

Case 2- Iron Removal from Mine Water with Solids Contact Clarifier

Case 2- Iron Removal from Mine Water with Solids Contact Clarifier

- Aggressive sizing results in State Point close to flux settling curve (0.75 scale-up)
- Low wasted sludge concentration
- Careful attention to flocculation required

Case 2- Iron Removal from Mine Water with Solids Contact Clarifier

What happens if sludge inventory is not controlled

- Underflow/Recycle concentration increases
- State point shifts upward along same overflow rate line
- Clarification failure. Solids rise to effluent

Conclusions

- Clarifier sizing needs to look at solids loading rate as well as hydraulic capacity
- Gives guidance for adjusting recycle flow rate to ensure good flocculation without excessive solids loading
- ws how recirculation pumping rate can affect wasted concentration

hschreiber@westech-inc.com