Underestimation of alkaline dosage and precipitate amount during water treatment: Role of inorganic carbon and use of PHREEQ-N-AMDTreat

23 Apr 2024

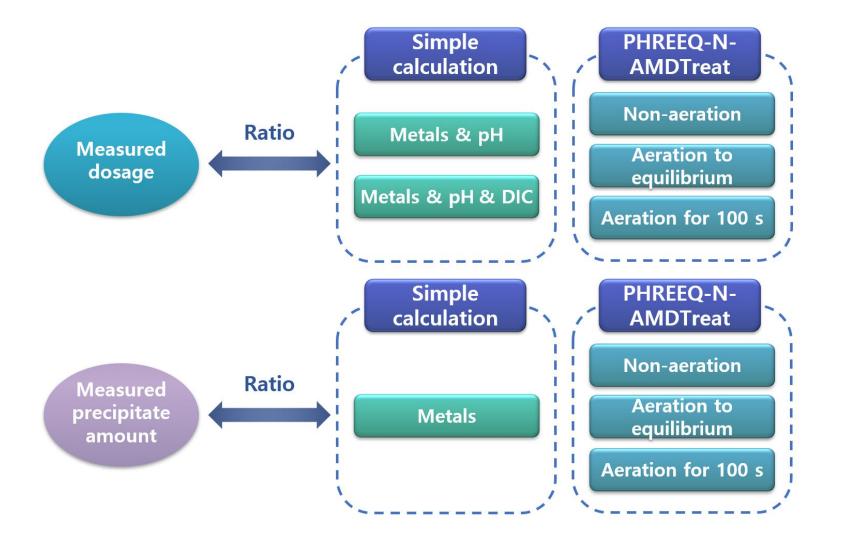
Duk-Min Kim^{a*}, Hye-Lim Kwon^a, Mi-Sun Park^b

^a Dept. of New Energy and Mining Engineering, Sangji University ^b Korea Mine Rehabilitation and Mineral Resources Corporation (KOMIR)

Kim DM et al. (2023) Underestimation of alkaline dosage and precipitate amount during water treatment: Role of inorganic carbon and use of PHREEQ-N-AMDTreat. J. Cleaner Prod. 433: 139683

Introduction

- ✓ Alkaline agents are generally injected to treat mine drainage in active treatment
- Importance of predicting the dosage of alkaline agents and amount of sludge
 - Essential factor for the design and operation of those treatment facilities
 - \blacktriangleright Contribution to reduction of alkaline dosage & CO₂ generation during lime production
- Alkaline dosage and sludge amount are often calculated based on concentrations & pH
 - Net acidity is applied for alkaline dosage calculations
 - Can lead to inaccurate results
- \checkmark To remove Mn, **pH** typically needs to be increased to **>8.3**
 - Necessary dosage of alkaline agents exceeds the net acidity


Introduction

✓ At pH >8.3, HCO_3^- becomes the principal component of acidity (Morel and Hering,

1993; Stumm and Morgan, 1996; Langmuir, 1997)

- Acidity = $2[H_2CO_3^0] + [HCO_3^-] + [H^+] [OH^-]$ (pH: 8.3 to 11.0)
- Increase in alkaline dosage is attributed to dissolved inorganic carbon (DIC)
- Precipitation of CaCO₃ also influences alkaline dosage and sludge amount (Nordstrom, 2020)
- ✓ **PHREEQ-N-AMDTreat** by USGS (Cravotta, 2020)
 - Utilized for assessing efficiency and design of mine drainage treatment facilities
 - Caustic Titration module considers DIC to predict alkaline dosage, precipitate amount, and concentrations with varying pH
- ✓ Factors affecting alkaline dosage and relevant prediction need to be studied (particularly at pH of >8.3)

Methods

Methods

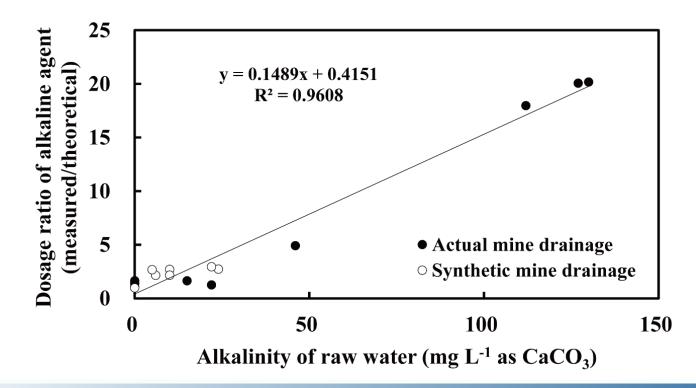
✓ Alkaline dosage assessment through batch experiments with increasing pH

- Influent from 7 active & semi-active treatment facilities including Mn, with varying characteristics
 - 6 sites: hydrated lime, 1 site: caustic soda
- 2) Artificial raw water
 - Mixed Fe + Mn (28.5-31.3 mg L⁻¹), only Mn (5.7-21.2 mg L⁻¹), only Fe (32 mg L⁻¹)
 - NaHCO₃ & CaSO₄·2H₂O were also added
- ✓ Modeling methods
 - PHREEQC v. 3.7: Calculation of saturation indices (SIs) & prediction of concentrations with varying lime dosages
 - PHREEQ-N-AMDTreat: Prediction of lime dosage & precipitate amount
 - Comparison among non-aeration, aeration to equilibrium, and pre-aeration conditions

Experiments for dosages of alkaline agents

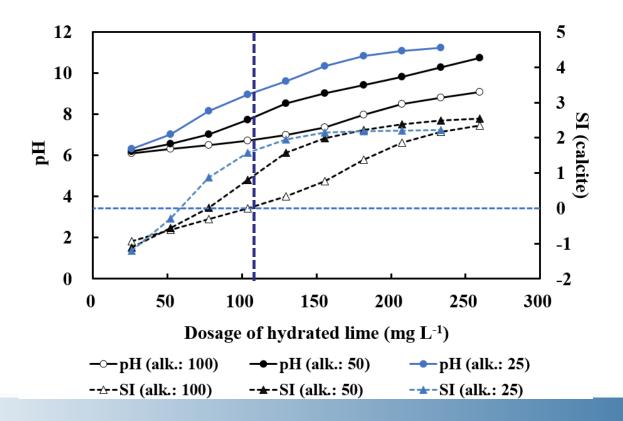
- \checkmark Calculation of alkaline dosage based on metal concentrations and pH
 - $D_m = -\Delta([H^+] + 3[Al] + 2[Cu] + 2[Fe^{II}] + 3[Fe^{III}] + 2[Mn] + 2[Zn]) \times \frac{74.095}{2}$

Facil- ity	Exp.	Sample	рН	Alk.	Al	Cu	Fe ^{ll}	Fe ^{III}	Mn	Zn	Measured/Predicted alkaline dosage	
											Metals & pH	Metals, pH & DIC
			(-)	(mg L ⁻¹ as CaCO ₃)		(mg L ⁻¹)					(-)	(-)
Ham-	1 st	Raw water	6.93	112	n.d.	n.d.	0.70	0.71	2.70	0.031	_	-
tae		Treated	8.88	133	0.03	n.d.	n.d.	0.03	1.45	0.001	1799%	124%
II-	1 st	Raw water	2.49	n.d.	32.9	17.2	4.90	182.7	7.23	15.3	-	-
gwang		Treated	8.64	38	0.26	0.008	n.d.	0.03	1.63	0.048	108%	-
Ok- dong	1 st	Raw water	6.99	15	n.d.	0.023	n.d.	0.05	19.22	51.6	-	-
		Treated	10.70	32	n.d.	n.d.	n.d.	0.01	0.03	0.129	166%	140%
Sam- bo	1 st	Raw water	6.92	22	2.36	n.d.	2.45	2.45	48.96	45.6	-	-
		Treated	10.07	35	0.14	n.d.	0.02	0.02	0.21	0.056	127%	110%
	2 nd	Raw water	6.98	22	2.75	0.004	n.d.	0.01	51.68	6.35	-	-
		Treated	9.94	28	0.12	n.d.	n.d.	n.d.	0.76	0.108	127%	115%

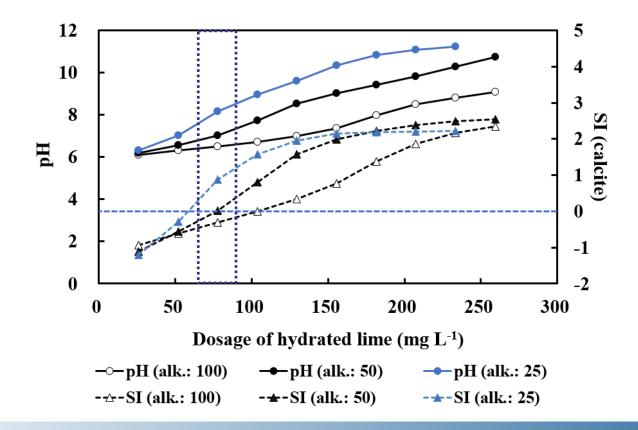

Experiments for dosages of alkaline agents

Facil- ity	Exp.	Sample	рН	Alk.	Al	Al Cu Fe ^{III} Fe ^{III} Mn Zn				Measured/Predicted alkaline dosage		
пту											Metals & pH	Metals, pH & DIC
			(-)	(mg L ⁻¹ as CaCO ₃)	(mg L ⁻¹)						(-)	(-)
Uljin	1st	Raw water	2.62	n.d.	11.9	0.032	n.d.	80.16	30.47	1.463	-	-
		Treated	9.84	32	0.25	n.d.	n.d.	0.21	0.43	0.001	166%	-
	2nd	Raw water	2.60	n.d.	11.9	0.045	1.20	85.93	30.39	1.333	-	-
		Treated	9.85	31	0.18	n.d.	0.09	0.05	0.66	0.003	141%	-
	3rd	Raw water	2.65	n.d.	12.9	0.051	1.05	77.45	33.81	1.829	-	-
		Treated	9.92	21	0.07	n.d.	n.d.	0.01	0.53	0.058	154%	-
Yeon-	1st	Raw water	7.91	130	0.02	n.d.	0.03	0.03	4.44	0.090	-	-
Hwa		Treated	8.99	55	0.02	n.d.	0.01	0.01	1.66	0.003	2018 %	113%
	2nd	Raw water	8.69	127	n.d.	n.d.	n.d.	n.d.	4.63	0.162	-	-
		Treated	8.86	47	n.d.	n.d.	n.d.	n.d.	1.76	0.063	2008%	142%
2nd Ye	150	Raw water	8.27	46	0.04	n.d.	0.02	0.01	10.61	0.105	-	-
onhwa		Treated	9.83	34	0.04	n.d.	n.d.	0.18	0.86	n.d.	493 %	166%

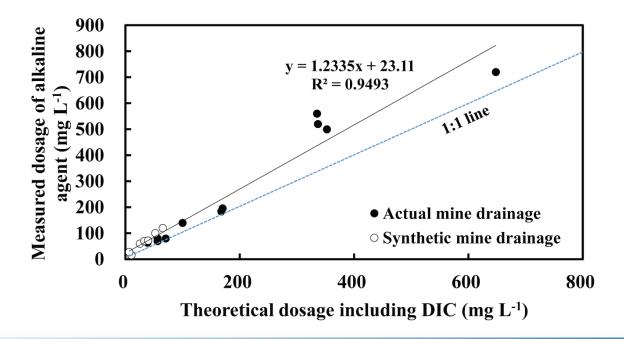
Experiments for dosages of alkaline agents


- ✓ Dosage ratio of alkaline agent (measure/theoretical) exhibited a positive relationship with the alkalinity of the raw water
- ✓ Alkalinity predominantly influenced dosage of alkaline agent at pH of >8.6

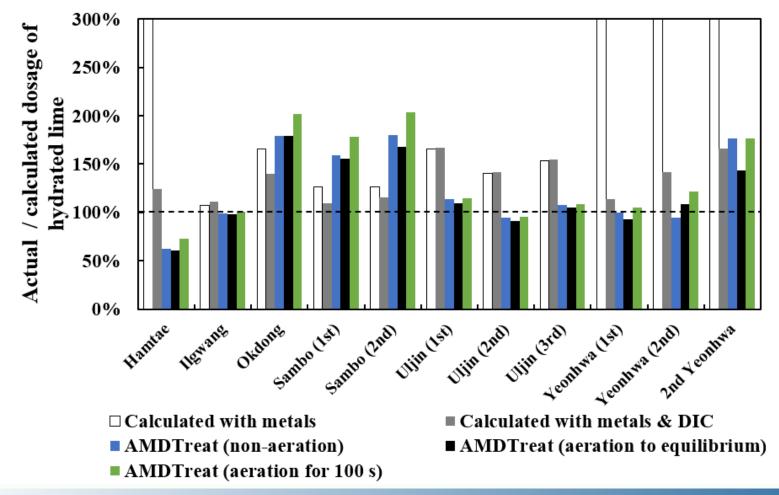
•
$$HCO_3^- + OH^- \rightarrow CO_3^{2-} + H_2O$$


Geochemical modeling to differentiate the effects of DIC and precipitation

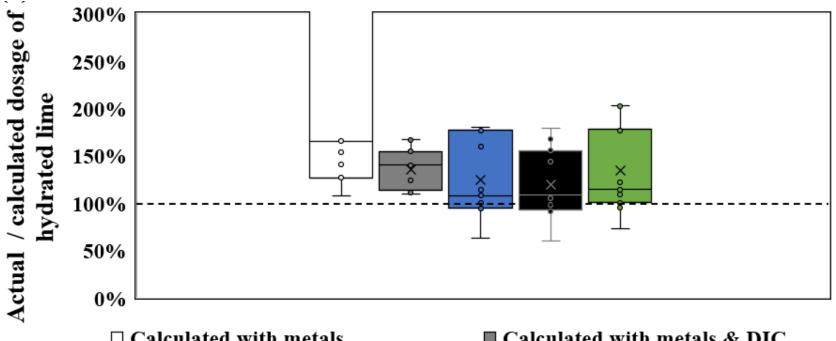
- ✓ PHREEQC modeling to discern effects of DIC & precipitation on lime addition
- ✓ More hydrated lime was required to achieve the same pH with increasing alkalinity of the raw water
- ✓ At identical dosages, SIs of calcite were generally higher in cases of lower alk.
 - In raw water with lower alk., pH more easily increased to increase CO₃²⁻


Geochemical modeling to differentiate the effects of DIC and precipitation

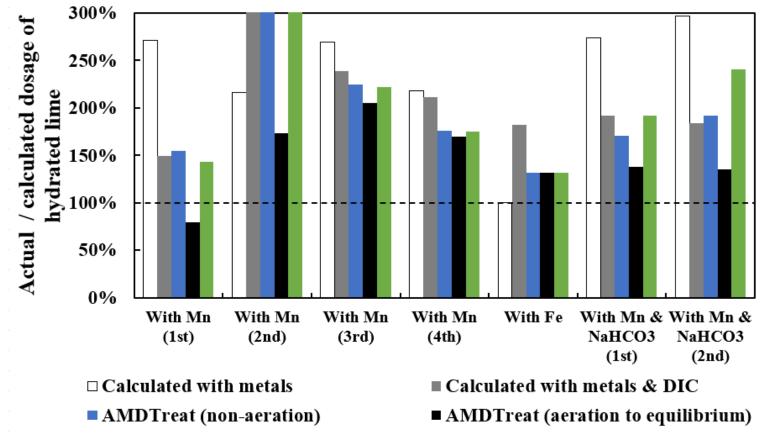
- Even if not all samples were saturated with calcite, pH variation by alk. was high
- > Alk., rather than calcite precipitation, is the primary factor to increase lime dosage
 - Additionally, brucite(Mg(OH)₂) & gypsum(CaSO₄·2H₂O) precipitation influence



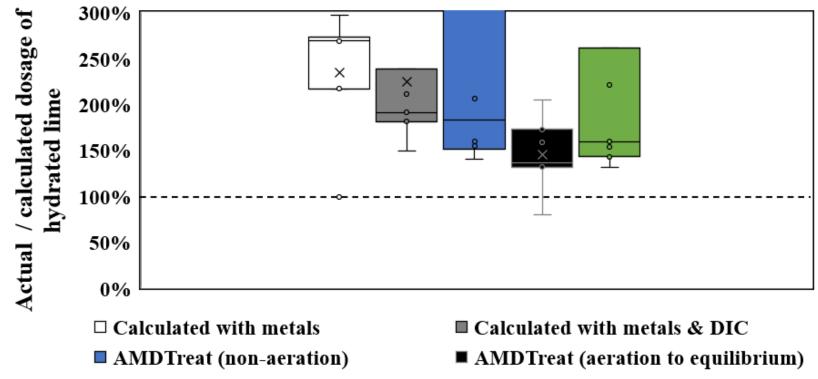
Effect of DIC in calculating alkaline agent dosage


- ✓ Calculation of alkaline dosage considering metal concentrations, pH and DIC
 - $D_d = -\Delta([H^+] + 3[Al] + 2[Cu] + 2[Fe^{II}] + 3[Fe^{III}] + 2[Mn] + 2[Zn] + 2[H_2CO_3^0] + [HCO_3^-]) \times \frac{74.095}{2}$
- Predicted dosages considering DIC change were **similar to measured values**
 - But measured values were higher (123%) possibly due to calcite precipitation
 - Change in DIC is difficult to be simply calculated

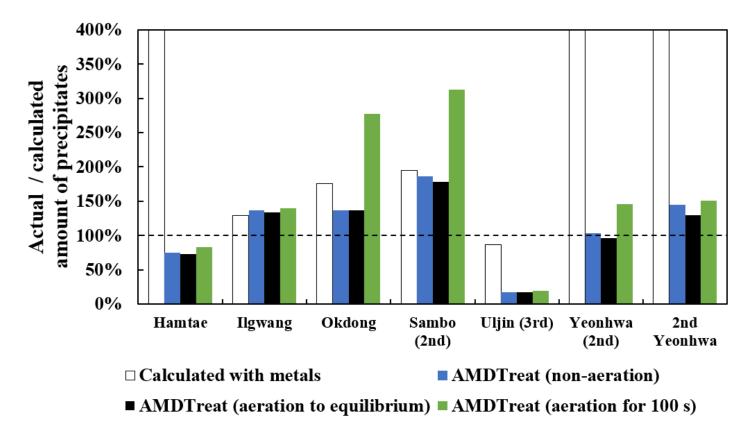
 ✓ Comparation of predicted & measured dosages among 3 aeration conditions of PHREEQ-N-AMDTreat



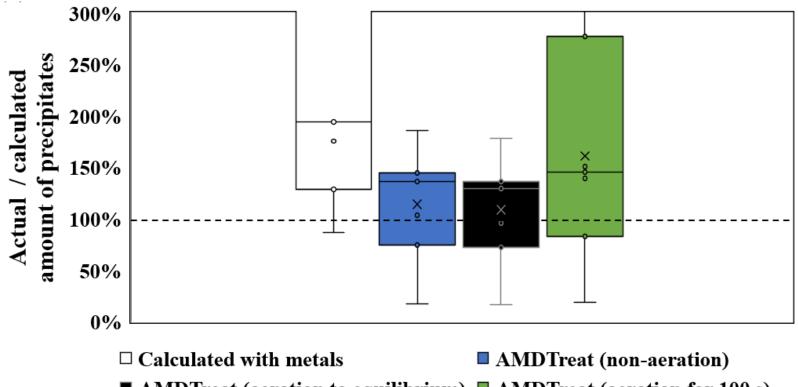
- ✓ Aeration condition closest to achieving 100% accuracy: Aeration to equilibrium
 - 119% in average


- □ Calculated with metals
- AMDTreat (non-aeration)
- AMDTreat (aeration for 100 s)
- Calculated with metals & DIC
- AMDTreat (aeration to equilibrium)

 Comparation of predicted & measured dosages among 3 aeration conditions of PHREEQ-N-AMDTreat – artificial mine drainages


AMDTreat (aeration for 100 s)

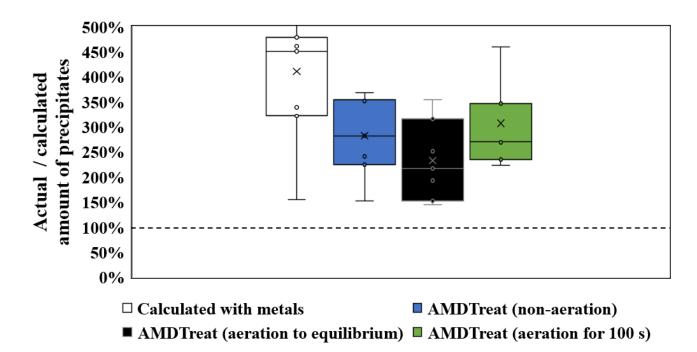
- ✓ Aeration condition closest to achieving 100% accuracy: Aeration to equilibrium
 - 147% in average
- 1) While Mn actually decreased, the other conditions predicted that Mn would remain
- 2) The other conditions overestimated alkalinity to underestimate lime dosage



AMDTreat (aeration for 100 s)

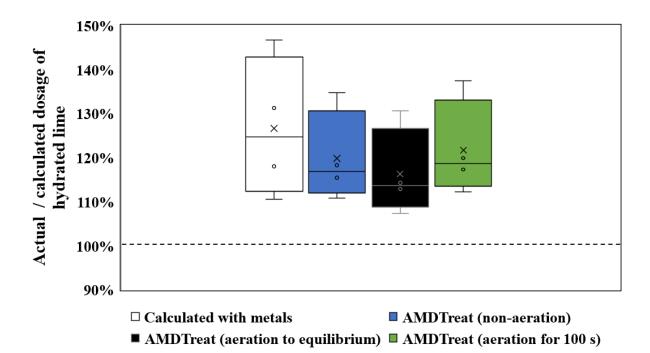
- Comparation of predicted & measured dosages among 3 aeration conditions of PHREEQ-N-AMDTreat
 - Precipitate amounts for actual mine drainages / Simple calculation: 86-5155%

- ✓ Aeration condition closest to achieving 100% accuracy: Aeration to equilibrium
 - 124% in average



AMDTreat (aeration to equilibrium) AMDTreat (aeration for 100 s)

- Comparation of predicted & measured dosages among 3 aeration conditions of PHREEQ-N-AMDTreat – artificial mine drainages
 - 500% 450% precipitates 400% Actual / calculated 350% 300% 250% amount of 200% 150% 100% 50% 0% With Mn With Mn With Mn With Mn With Fe With Mn & With Mn & (1st) (2nd) (3rd) (4th) NaHCO3 NaHCO3 (1st) (2nd) □ Calculated with metals AMDTreat (non-aeration)
 - Simple calculation: 86-5155%

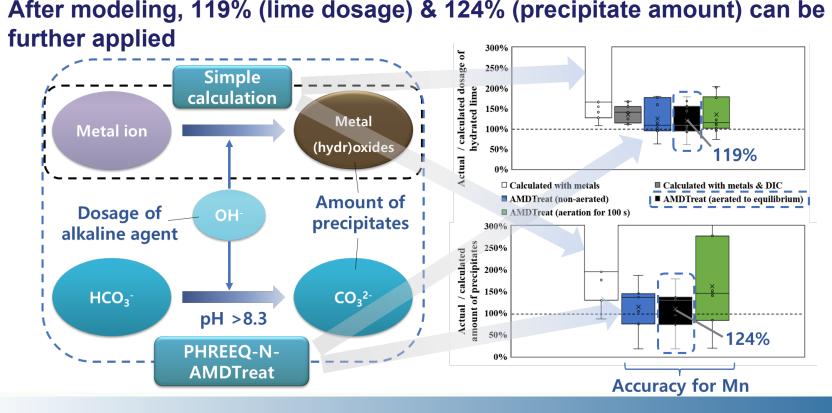

■ AMDTreat (aeration to equilibrium) ■ AMDTreat (aeration for 100 s)

- ✓ Aeration condition closest to achieving 100% accuracy: Aeration to equilibrium
 - 233% in average
 - Related to aforementioned reasons → Most accurate simulation of effects including calcite precipitation by DIC

Verification example in full- and pilot-scale treatment facilities

- ✓ Verification of lime dosage using operational data of Samtan treatment facilities
- ✓ Aeration condition closest to achieving 100% accuracy: Aeration to equilibrium
 - 116% in average

- ✓ Verification of precipitate amount using pilot-scale experiments at Samtan mine
- ✓ Condition closest to achieving 100% accuracy: Aeration to equilibrium (97%)


Conclusions

✓ Principal cause of underestimation of lime dosage is DIC in influent

Other causes include precipitation of calcite & brucite

 \checkmark

 Aeration to equilibrium condition of PHREEQ-N-AMDTreat was the most suitable for predicting lime dosage and precipitate amount (particularly if pH >8.3)

Thank you for your attention

* Further questions & discussion: kdukmin8@sangji.ac.kr

- This study was supported by the R&D project of KOMIR (2022-2023).
- We appreciate students at Sangji Univ. for conducting experiments.

Kim DM et al. (2023) Underestimation of alkaline dosage and precipitate amount during water treatment: Role of inorganic carbon and use of PHREEQ-N-AMDTreat. J. Cleaner Prod. 433: 139683