Batch operating limestone treatment system (BOLTS): a novel approach to treating mine drainage

Tasker, Travis; Roman, Ben; Eckenrode, James; Himes, Nicole; Warner, Henry; Neely, Buck; Denholm, Cliff; Strosnider, William; LaBar, Julie; Danehy, Tim

Typical <u>Auto-Flushing Vertical Flow Pond</u> (AFVFP) Continuous flow with periodic flush set by a timer

Preferential flow paths occur in heterogenous porous media, likely attributing to a true HRT that is lower than the design HRT.

Velocity Fields

Kanavas et al. (2021) "Flow path resistance in heterogenous porous media recast into a graph-theory problem." *Transport in Porous Media*

Flow-through with **<u>channelized</u>** flow

Flow path also influences HRT and therefore pH \rightarrow implications for metal precipitation and clogging

A BOLTS was built near Puritan, PA

			Flow (GPM) 🛛 💻					
Monitoring			· · ·	,				
Period	<u>n</u>	<u>Minimum</u>	<u>Maximum</u>	<u>Average</u>	<u>Median</u>	95 th %tile	99 th %tile	
9/1/16 - 8/31/17	30,618	110	1599	261	137	558	664	
9/1/17 - 8/31/18	28,886	110	1374	242	209	599	724	

Darameter	<u>pH</u>	Conductivity	Acidity	Iron	Manganese	Aluminum	Sulfate
Parameter	s.u.	umnos/cm	mg/L	mg/L	mg/L	mg/L	mg/L
Minimum	2.9	1242	77	3.9	1.1	7.7	584
Maximum	3.1	1526	150	9.2	1.6	14.6	709
Average	3.0	1358	114	6.3	1.4	12.0	653
Median	3.1	1328	110	6.0	1.4	12.4	589

~ 800 feet ~ 244 meters

The system utilizes a holding pond, solar-powered Agri Drain Smart Drainage water level control structures, and a limestone basin to treat the MD

The system utilizes a holding pond, solar-powered Agri Drain Smart Drainage water level control structures, and a limestone basin to treat the MD

> AFVFP 2,000 short tons 1,530 yd³ bulk volume 26% porosity 4.5-hr HRT at 300 gpm

Effluent

SP2

SP1 BOLTS Holding 4,600 short tons pond 3,400 yd³ bulk volume R-3, AASHTO#1, AASHTO#3 30% porosity 9-hr HRT at 376 GPM

High flow bypass

When influent flowrates are > than 282 gpm, the holding pond is full before a 12-hr batch treatment cycle is complete \rightarrow flow is bypassed into an AFVFP until the batch cycle is complete

High flow bypass

AFVFP 2,000 short tons 1,530 yd³ bulk volume 26% porosity 4.5-hr HRT at 300 gpm

Effluent

SP2

SP1 BOLTS 4,600 short tons 3,400 yd³ bulk volume R-3, AASHTO#1, AASHTO#3 30% porosity 9-hr HRT at 376 GPM

In batch treatment mode, the BOLTS can fill and empty within 45 minutes (i.e., 0.75 hours) 0.75 hours to fill @

In batch treatment mode, the BOLTS can fill and empty within 45 minutes (i.e., 0.75 hours) 0.75 hours to fill @

The limestone is a mixture of R-3, AASHTO#1, and AASHTO#3 \rightarrow average surface area of 556 ft²/short ton

So.... what was the goal of this research?

We hypothesize that a BOLTS overcomes short circuiting and flow challenges that can occur in auto flushing vertical flow pond's (AFVFP's) by allowing "batches" of MD to be treated for a set HRT, producing higher acidity removal rates than a typical horizontal flow AFVFP that operates in flowthrough.

The acidity in the MD from Puritan, PA was neutralized in buckets (full of Puritan limestone) after 5-hour HRT

A first order model was used to predict net acidity with time elapsed

$$\begin{split} C_t &= C_s - [(C_s - C_0) \exp(k \ t_d)] \quad \text{(Cravotta et al., 2008)} \\ k_{sa} &= k/(A/V) \\ A/V &= A_u \ (\rho_b/n) \\ A_u &= 556 \ ft^2/short \ ton \\ n &= 0.3 \\ \rho_b &= 1.35 \ short \ tons/yd^3 \\ A/V &= 2500 \ ft^2/yd^3 \end{split}$$

Acidity was also measured in the effluent of the limestone beds when operated in flowthrough treatment mode

ISCO 3700 water sampler and Eureka Manta+20 water quality monitoring sonde were installed in the Agri Drain box at the outlet of the AFVFP \rightarrow water samples collected during flow through and flushing

The AFVFP had a lower acidity removal rate than the bucket tests

- Bucket Test
 Bucket Test (modeled)
 k = 0.26/hr
 k_{sa}= 1.0x10⁻⁴ yd³/ft²hr
- AFVFP
 AFVFP(modeled)
 k= 0.08/hr
 k_{sa}= 3.1x10⁻⁵ yd³/ft²hr

Acidity was also measured in the effluent of the limestone beds when operated in Batch treatment mode

Measured water chemistry during the 45-minute flush cycle

The BOLTS had an acidity removal rate that was similar to the bucket tests

The acidity removal rates were used to compare costs of treating the MD in a BOLTS or AFVFP

Mass of limestone = [(Q C T)/x] + [(Q $\rho_b t_d$)/ (V_v x)] (Hedin and Watzlaf, 1993)

Q = flowrate

- ρ_{b} = bulk density of limestone
- t_d = detention time (i.e., HRT)
- V_v = bulk void volume expressed as a decimal (i.e., the porosity of the stone = n)
- C = the predicted concentration of alkalinity or net acidity (i.e., ΔC)
- T = design life (i.e., t_L)
- $x = CaCO_3$ content expressed as a percentage

The acidity removal rates were used to compare costs of treating the MD in a BOLTS or AFVFP

Mass of limestone = [(Q C T)/x] + [(Q $\rho_b t_d$)/ (V_v x)] (Hedin and Watzlaf, 1993)

Substitute:

$$\begin{split} &C_t = C_s - [(C_s - C_0) \exp(k t_d)] & \rightarrow \quad t_d = [\ln(C_t - C_s)/C_0 - C_s)]/k \\ &k = k_{sa}(A/V) \\ &A/V = A_u (\rho_b/n) \\ &V_v = n \\ &C = \Delta C \\ &T = t_i \end{split}$$

Mass of limestone = $M_s = (Q/x)[(t_{L} \Delta C)] + (Q/x)[ln[(C_t - C_s)/(C_o - C_s)]/(k_{sa}A_u)]$

An AFVFP would require ~2x more limestone than a BOLTS to treat the Puritan MD to -20 mg/L net acidity

Assumptions:

Q = 300 gpm

- $C_o = 250 \text{ mg/L}$ net acidity
- C_t = -20 mg/L net acidity
- C_s = -113 mg/L net acidity
- $t_L = 20$ years
- x = 0.9 (limestone purity)
- $A_u = 556 \text{ ft}^2/\text{short ton (AASHTO#1)}$

to AASHTO#3)

n = 0.3

 ρ_b =1.35 short tons/yd³ k_{sa} = -1.2x10⁻⁴ yd³/ft²hr for BOLTS

 k_{sa}^{3} = -3.1x10⁻⁵ yd³/ft²hr for AFVFP

BOLTS:

 $M_{s} = (Q/x)[t_{L} \Delta C] + (Q/x)[ln[(C_{t} - C_{s})/(C_{o} - C_{s})]/(k_{sa}A_{u})]$

<u>AFVFP:</u>

M_s = 3952 + 7822 short tons = 11,774 short tons for AFVFP

The BOLTS is cheaper than an AFVFP for treating the Puritan MD

\$450,000 Assumptions: \$400.000 $\rho_{\rm b}$ =1.35 short tons/yd³ RUP BOLTS Kallours this study Agri Drain Smart Drain® in BOLTS = \$350,000 \$17,960 per structure Agri Drain Smart Drain® in AFVFP = \$300,000 \$15,230 per structure \$17.35/short ton of limestone \$250,000 Cost \$6.50/yd³ of excavation w/ clay liner \$200.000 \$13/ft of 12-inch perforated DR-26 HDPE pipe \$150,000 \$7.5/ft of 6-inch perforated D pipe \$1/yd² of geotextile \$100,000 Depth of basins = 8 feet \$50,000 Side slopes = 2:1Length to width ratio = 5:1 \$-200 400 600

Flowrate (GPM)

In summary, the BOLTS produced higher acidity removal rates than the AFVFP \rightarrow new ideas for treating MD?

k = -0.26/hrk₅₃= - 1.0x10⁻⁴ vd³/ft²hr AFVFP AFVFP(modeled) k= - 0.08/hr k_{sa}= - 3.1x10⁻⁵ yd³/ft²hr

BOLTS BOLTS (modeled) k = -0.31/hrk_{sa} = - 1.2x10⁻⁴ yd³/ft²hr

📶 BioMost, Inc.

Questions?

Dr. Travis Tasker Associate Professor Saint Francis University ttasker@francis.edu

References

Cravotta III, C. A. (2008). Laboratory and field evaluation of a flushable oxic limestone drain for treatment of net-acidic drainage from a flooded anthracite mine, Pennsylvania, USA. *Applied Geochemistry*, 23(12), 3404-3422.

Hedin, R. S., & Watzlaf, G. R. (1993). The effects of anoxic limestone drains on mine water chemistry. Proceedings American Society of Mining and Reclamation. *Proceedings America Society of Mining and Reclamation*, 185 – 194.

An experiment was performed to see how long it took the BOLTS to fill at continuous influent flow of ~376 gpm

9 hours to fill @ 376 gpm

The BOLTS has a bulk volume of 3,400 yd³, void volume of 203,040 gallons (i.e., 1005 yd³), and porosity of 30%

540 minutes x 376 gal/min = 203,040 gallon void volume (i.e., 1005 yd³)

1005 yd³ void volume / 3,400 yd³ bulk volume = **30% porosity**

Bulk density = 4,600 short tons / 3,400 yd³ bulk volume = **1.35 short tons / yd³**

An experiment was performed to see how long it took the AFVFP to fill at continuous influent flow of ~295 gpm

The AFVFP has a bulk volume of 1,530 yd³, void volume of 79,650 gallons (i.e., 394 yd³), and porosity of 26%

270 minutes x 295 gal/min = 79,650 gallon void volume (i.e., 394 yd³)

394 yd³ void volume / 1,530 yd³ bulk volume = **26% porosity** Average net acidity in the effluent during flowthrough treatment mode (9-hour theoretical HRT) was 71 mg/L

BOLTS with 9 hour hold time \rightarrow the average net acidity during the flush was -26 mg/L

AFVFP would be cheaper than the BOLTS if sized with same k_{sa} as BOLTS

Cost

Assumptions:

- $\rho_b = 1.35$ short tons/yd³
- Agri Drain Smart Drain® in BOLTS = \$17,960 per structure
- Agri Drain Smart Drain® in AFVFP = \$15,230 per structure
- \$17.35/short ton of limestone
- \$6.50/yd³ of excavation w/ clay liner
- \$13/ft of 12-inch perforated DR-26 HDPE pipe
- \$7.5/ft of 6-inch perforated D pipe
- \$1/yd² of geotextile
- Depth of basins = 8 feet
- Side slopes = 2:1
- Length to width ratio = 5:1

Could the MD be treated faster with smaller stone size?

If stone size was reduced, the MD could be treated faster

If stone size was reduced, would require 27% less limestone to treat the MD

Assumptions:

Q = 300 gpm $C_{o} = 250 \text{ mg/L}$ net acidity $C_{t} = -20 \text{ mg/L}$ net acidity $C_s = -113 \text{ mg/L}$ net acidity $t_1 = 20$ years x = 0.9 (limestone purity) $A_{\rm H}$ = 556 ft²/short ton (AASHTO#1 to AASHTO#3) Au = $2.800 \text{ ft}^2/\text{short ton}$ (AASHTO#7) n = 0.3 $\rho_{\rm b}$ =1.35 short tons/yd³ $k_{s_{2}} = -1.2 \times 10^{-4} \text{ yd}^{3}/\text{ft}^{2}\text{hr}$ for BOLTS $k_{s_{2}} = -3.1 \times 10^{-5} \text{ yd}^{3}/\text{ft}^{2}\text{hr}$ for AFVFP

$$M_{s} = (Q/x)[t_{L} \Delta C] + (Q/x)[ln[(C_{t} - C_{s})/(C_{o} - C_{s})]/(k_{sa} A_{u})]$$

$$k_{sa} = -1.2x10^{-4} \text{ yd}^{3}/\text{ft}^{2}\text{hr for BOLTS}$$

 $A_u = 556 \text{ ft}^2/\text{short ton for AASHTO#1 to #3}$ $M_s = 5,972 \text{ short tons}$ for AASHTO#1 / AASHTO#3

A_u = <u>2,800 ft²/short ton</u> for AASHTO#7

Cost of BOLTS would decrease from \$200,000 to \$150,000 if used smaller stone size

Cost

Assumptions:

- $\rho_b = 1.35$ short tons/yd³
- Agri Drain Smart Drain® in BOLTS = \$17,960 per structure
- Agri Drain Smart Drain® in AFVFP = \$15,230 per structure
- \$17.35/short ton of limestone
- \$6.50/yd³ of excavation w/ clay liner
- \$13/ft of 12-inch perforated DR-26 HDPE pipe
- \$7.5/ft of 6-inch perforated D pipe
- \$1/yd² of geotextile
- Depth of basins = 8 feet
- Side slopes = 2:1
- Length to width ratio = 5:1

