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Coal mine drainage (CMD): A major 
pollutant in Northern Appalachia 
• Abandoned underground coal mines release CMD into waterways
• Degrades water sources for decades after mine closure
• >10,000 miles Appalachian streams impacted by CMD
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Constituent Underground
CMD 1,2

Maximum 
Contaminant 
Limit (MCL)

pH 2.7 6-8
SO4 8,000 mg/L 250 mg/L

(Secondary)
Fe 512 mg/L 7 mg/L

1Cravotta, 2008a; 2Cravotta and Brady, 2015
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CMD generally improves on a decadal 
time scale

Initial Rapid Decline

Adapted from Merritt and Power, 2022Time since mine closure

Long-term steady-state

Rapid improvement after mine closure and initial 
flooding, eventually steady state reached



Predicting contaminant trends 
informs remediation decisions

• Important point of investigation 
because of the long-term 
treatment liability and costs
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???

Appalachian coal mine discharge

MCL



CMD chemistry is difficult to 
predict

• Non-linear, site-specific 
hydrogeochemical 
processes influence 
contaminate trends

• Fe attenuation depends on 
oxidation state:  FeIII(OH)3 
vs.  FeIICO3

• Often early time data in 
abandoned mines is missing
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Missing early 
data
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Identify/quantify 
important 
processes

Simulate CMD 
Evolution 

Estimate 
remediation 

costs as CMD 
evolves
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Lowber Discharge

pH ~6.5

pH 
~3.2

We are 
here

Study Area

• Located in Irwin Coal Basin
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Lowber Discharge
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Decadal Median

pH 
~6.5

pH 
~3.2

• Located in Irwin Coal Basin
• Series of CMDs that transition 

from net-acidic to net-alkaline 
along a depth profile 

• Deep (94m), flooded mine with 
historic data showing net-acidic 
to net-alkaline transition 

• High alkalinity (360 mg/L as 
CaCO3), [Na] (450 mg/L) & Fe 
(50 mg/L)
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Northern Appalachian CMD: net-
acidic to net-alkaline trends 

• Clay-rich 
Overburden 
mineralogy, CEC 
measurements, 
and Na-rich water 

• PHREEQC saturation 
index in equilibrium 
with siderite



• Incorporating 
cation exchange 
and siderite 
equilibria into 
predictive models 
improves long 
term projection of 
acidity production 

Remediation Prediction 
Implications

Siderite 
equilibria  [Fe]

Increasing [HCO3] from 
cation-exchange driven 
carbonate dissolution



New Approach: First flush mixing 
and reaction model 

0 20 40 60 80 100
Elapsed Time, years 11

First Flush 
Solution

Highly 
mineralized, 
low pH 
starting 
solution

Mine water quality evolution



New Approach: First flush mixing 
and reaction model 
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New Approach: First flush mixing 
and reaction model 
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New Approach: First flush mixing 
and reaction model 

0 20 40 60 80 100
Years since mine abandonment

Cation-exchange 
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First Flush 
Solution

Mine water quality evolution model



Three Model Scenarios

0 20 40 60 80 100
Elapsed Time, years

Cation-exchange 
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First Flush 
Solution

Reactant/Product 
minerals 

Groundwater 
Dilution 

Mine water quality evolution

1 2 3
Scenario



Lowber Discharge Temporal Fe data
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Iron Scenario 1: Groundwater 
dilution
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Iron Scenario 2: Dilution and mineral 
reaction and equilibrium
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Iron Scenario 3: Mineral dissolution 
with cation exchange
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Iron Scenario 3: Mineral dissolution 
with cation exchange
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Cation-exchange influences 
temporal alkalinity production
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Net-acidic Net-alkaline



Cation-exchange influences 
temporal alkalinity production
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How can we use predictive 
modeling to inform 
remediation decisions?
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• With models that 
accurately predict future 
CMD contaminant trends:

Long-term treatment strategies 
can be optimized 

• CMD initially acidic after 
abandonment

• Requires costly active 
treatment that 
continuously dose CMD 
with chemicals 
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Long-term treatment strategies 
can be optimized 

• Minewater chemistry 
initially evolves to net-
alkaline character:

• Some components of 
treatment may be scaled 
back
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Long-term treatment strategies 
can be optimized 

• Minewater chemistry 
continues to evolves to 
net-alkaline character with 
decreasing Fe and 
acidity:

• Passive treatment system
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Long-term treatment strategies 
can be optimized 

• Minewater chemistry 
continues to evolve to 
net-alkaline character with 
decreasing Fe and 
acidity:

• Passive treatment system 
downsize
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Lowber Passive Treatment 
system

• Constructed in 2006 
• Passive treatment 

system with six 
settling ponds and 
one wetland 

•  Promote the 
oxidation of Fe2+ 

and settling of 
Fe(III)oxyhydroxides
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Lowber Passive Treatment 
system

Current influent 
chemistry:  
• Fe-rich (48mg/L)
• pH: 6.3
• Net-acidity: 
-262 mg/L CaCO3

(net-alkaline)
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Lowber Passive Treatment 
system

Effluent:
• Fe: <1 mg/L
• pH: ~7.0
• Falls below the  

maximum 
contaminant level 
for effluent mines 
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How does treatment technology and cost of 
net-acidic to net-alkaline Lowber CMD change 
over time?

A: Initial first flush (1953-
1963)
B: Early net-alkaline 
transition (1970s)
C: Treatment installation 
(2007-2012) 
D:  Current net-alkaline 
(2020s)
E: Future conditions 
(2043-2053) 
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Treatment strategy selected for 
each case using :

A: Initial first flush (1953-1963)
B: Early net-alkaline transition 
(1970s)
C: Treatment installation (2007-
2012) 
D:  Current net-alkaline (2020s)
E: Future conditions (2043-
2053) 



34

• AMDTreat was developed cooperatively by:
• Office of Surface Mining and Reclamation and Enforcement (OSMRE)
• Pennsylvania Department of Environmental Protection (PADEP)
• U.S. Geological Survey (USGS)
• West Virginia Department of Environmental Protection (WVDEP)

AMDTreat 
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2 Objectives:
• Provide ability to develop site-specific cost estimates 

to treat mine drainage.
• Active and passive technologies

AMDTreat 
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2 Objectives
• Provide ability to develop site-specific cost estimates 

to treat mine drainage.
• Active and passive technologies

• Provide the ability to geochemically model mine 
drainage treatment.

• PHREEQ-N-AMDTreat is a geochemical modelling tool capable of 
simulating changes in pH and solute concentration for a range of active 
and passive treatment technologies

AMDTreat 
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Phreeq-N-AMDTreat vs. Real 
Lowber treatment data
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Phreeq-N-AMDTreat vs. Real 
Lowber treatment data
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• Fe sorbent 
is a key 
variable in 
the model to 
accurately 
predict 
minewater 
treatment
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Phreeq-N-AMDTreat vs Real 
Lowber data
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• Modeled pH was 
underestimated 

• Averaging pH in 
sample data may 
have resulted in an 
overestimation 

𝑝𝑝𝑝𝑝 = − log 𝑝𝑝+



40

Phreeq-N-AMDTreat vs Real 
Lowber data

• PCO2 calculations are pH 
and temperature sensitive

• Averaging pH data 
affected calculations

• However, still produced  
similar default vs. 
calculated CO2 outgassing 
rates
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AMDTreat: Cost-analysis of 
treatment over time

A: Initial first flush (1953-1963)
B: Early net-alkaline transition 
(1970s)
C: Treatment installation (2007-
2012) 
D:  Current net-alkaline (2020s)
E: Future conditions (2043-
2053) 

Active treatment
• Same footprint, different 

chemicals added

Passive treatment
• Same footprint of 

current passive 
treatment system 
in place
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AMDTreat: Cost-analysis of 
treatment over time

A: Initial first flush (1953-1963)
B: Early net-alkaline transition 
(1970s)
C: Treatment installation (2007-
2012) 
D:  Current net-alkaline (2020s)
E: Future conditions (2043-
2053) 

Net-Present Value (75 years)
$33.1 million 

$1.7 million
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Time 
Period Treatment Technology Capital Cost Annual 

O&M Costs
Net Present 

Value
Project 

Footprint 
USD USD USD hectares

A:1953-
1963

Decarbonation, Lime, 
Reaction Tank, Clarifier, 

Wetland
3,080,000 970,000 33,000,000 0.935

B: 
1972-
1975

Decarbonation, H2O2, 
Reaction Tank, Clarifier, 

Wetland
2,580,000 560,000 19,400,00 0.935

AMDTreat: Active treatment cost 
estimates over time

• CMD chemistry improved from net-acidic to net-alkaline
• Switch from lime to hydrogen peroxide decreased annual  costs
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AMDTreat: Passive treatment 
cost estimates over time

Time Period Treatment Technology Capital Cost Annual O&M 
Costs

Net Present 
Value

Project 
Footprint 

USD USD USD hectares

C: 2007-2012 Decarbonation, Ponds 
(6), Wetland (1) 1,560,000 42,000 2,350,000 5.19

D: 2017-2021 Decarbonation, Ponds 
(6), Wetland (1) 1,560,000 41,000 2,140,000 5.19

E: 2043-2053 Decarbonation, Ponds 
(6), Wetlands (1) 1,510,000 23,000 1,720,000 5.19
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Actual Capitol Costs vs 
AMDTreat cost estimate

Time Period Treatment Technology Capital Cost Annual O&M 
Costs

Net Present 
Value

Project 
Footprint 

USD USD USD hectares

C: 2007-2012 Decarbonation, Ponds 
(6), Wetland (1) 1,600,000 42,000 2,350,000 5.19

D: 2017-2021 Decarbonation, Ponds 
(6), Wetland (1) 1,600,000 41,100 2,140,000 5.19

E: 2043-2053 Decarbonation, Ponds 
(6), Wetlands (1) 1,510,000 23,000 1,717,000 5.19

2006 Capitol costs: ~$1.3 million ($1.9 million with inflation)
20% underestimation of reported costs
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Sludge removal is 
limited by:
• Site Storage
• Available Funds
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• We identified important spatiotemporal trends affecting the net-acidic 
to net-alkaline transition in deep minepools

• Late-stage Fe concentrations are influenced by siderite equilibrium 
acting as a source and sink of Fe in deep minepools

• CEC influences the timing of net acidic to net alkaline transition and 
ion composition.

• Forward modeling approaches that include dilution, mineral reactions, 
and CEC  are needed to describe contaminant and major ion 
evolution accurately.  

• Changes in CMD management strategies may be warranted as CMD 
chemistry improves on a decadal timescale

• User background experience and knowledge on actual industry costs 
is essential for making cost estimates of treatment systems

Conclusions 
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