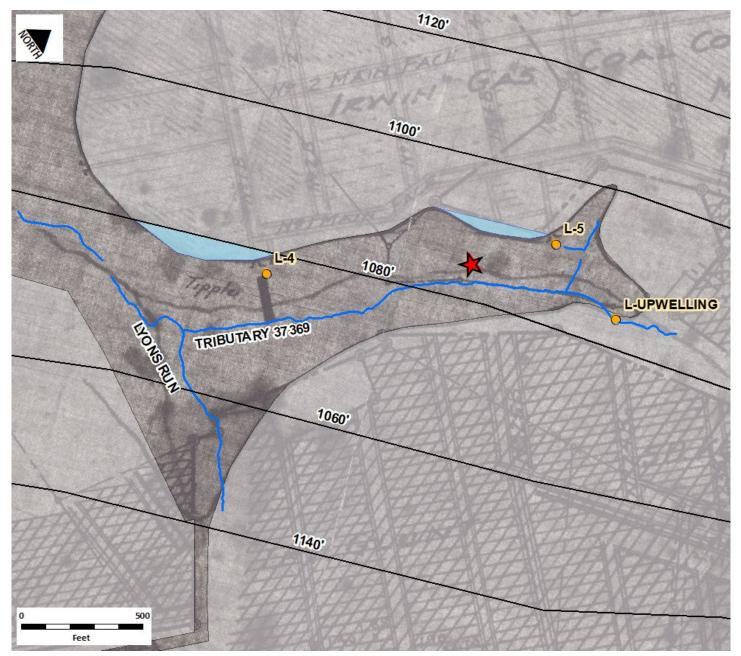

Navigating Difficult Site Constraints to Facilitate Ecological Recovery of an Impaired Watershed

Presented By

Timothy A. Denicola, PG, CFM

Civil & Environmental Consultants, Inc.

April 25, 2024



- Lyons Run Watershed, Westmoreland County, Pennsylvania
 - 5.1 miles (8.2 km)
 - 5.7 mi² (14.7 km²)

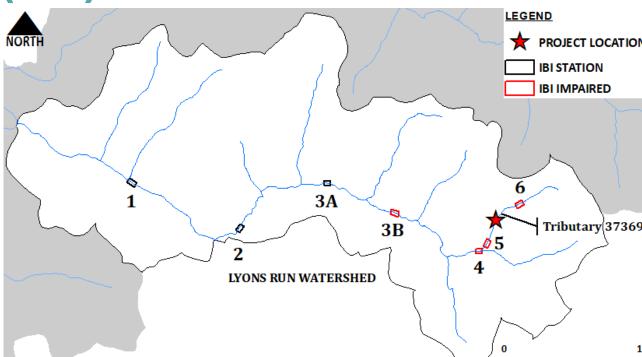
Mining

- Irwin Gas Coal Company Mine No. 2
- Operated 1917 1924
- Perched above-drainage mine pools
- Three AMD Sources
 - High acidity
 - High iron and aluminum
 - Seasonally influenced

AMD Sources

Water Quality

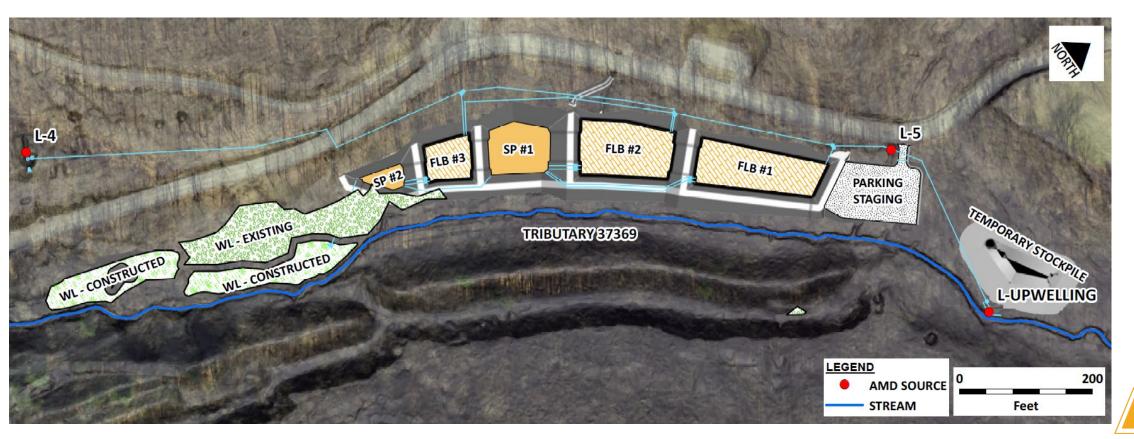
DATE	AMD	рΗ	Specific	Dissolved	Discharge	Hot	Total	Са	Fe	Fe	Al	Al	Mn	Mn	Mg	SO4
DATE	Source		Conductance	Oxygen	Q	Acidity	Alkalinity	Total	Total	Dis	Total	Dis	Total	Dis	Total	Total
m/d/y			μS/cm	mg/L	L/s	mg/	L as CaCO3	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
3/1/2023	L-4	2.71	2017	9.14	1.20	336	0	97.3	28.6	28.7	32.7	33.1	3.1	2.9	32.3	816
3/1/2023	L-5	2.58	2809	9.69	1.78	490	0	83.1	42.8	41.9	49.3	48.0	4.5	4.4	28.5	988
3/1/2023	L-UPWELL	2.69	2190	7.13	1.80	335	0	65.4	30.9	29.7	31.0	36.1	3.2	3.0	22.9	732



Index of Biotic Integrity (IBI)

- Low score upstream (Site 6)
 - Intermittent and circum-neutral pH
- Low score below AMD (Sites 4, 5)
 - Perennial low pH
- Moderate score downstream mainstem (Site 3B)
 - Dilution and precipitation
- Good score lower watershed (Sites 1, 2, 3A)
 - Dilution, neutralization, attenuation

Station	рН	Specific	Dissolved	Discharge	Total	Est.	Benthic
No.		Conductance	Oxygen	Q	Taxa	Density	IBI Score
_		μS/cm	mg/L	L/s		#Organisms/ m2	
1	8.49	568	15.5	73.69	25	409	60.9
2	8.24	390	14.5	38.23	33	280	68.7
3a	7.61	483	13.7	16.21	24	96	65.0
3b	5.23	595	13.9	9.72	13	28	44.5
4	2.78	1108	14.0	3.97	8	27	14.7
5	2.70	1065	13.9	3.91	4	265	11.3
6	6.03	295	13.7	1.89	11	124	24.6



Miles

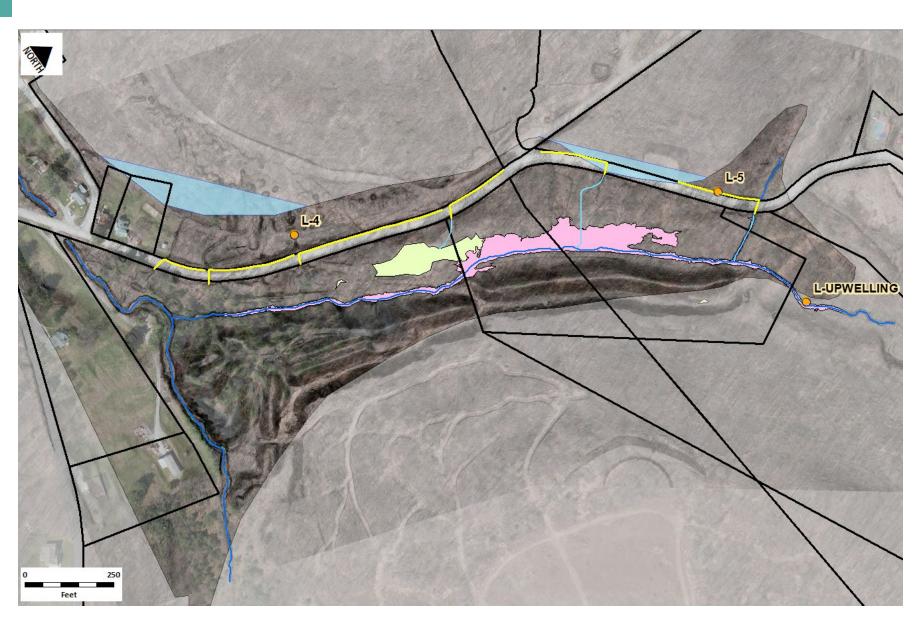
Proposed Project

Successive alkalinity producing system (SAPS)

- Flushable limestone beds compost over limestone
- Settling ponds
- Polishing wetlands

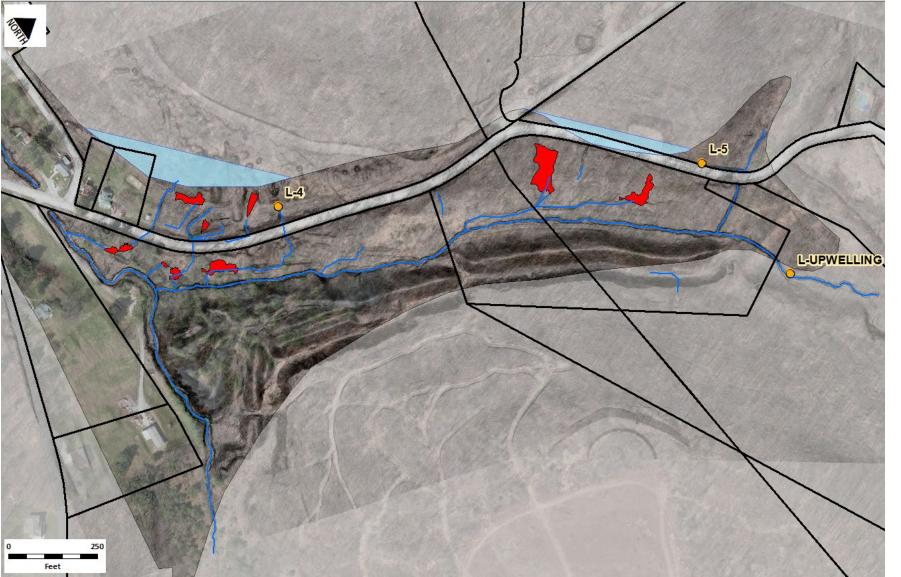
Water Quality Mitigation Bank

Deeeb	Length IBI		D-f	D://		USACE Guidance ¹	
Reach	(ft)	Score	Reference	Difference	Length (ft)	Enhancement ²	Credits
1	4,302	60.9	68.7	7.8	0	2.5:1	
2	4,604	68.7	68.7	0.0	0	2.5:1	
3A	2,732	65.0	68.7	3.7	0	2.5:1	
3B	2,205	44.5	68.7	24.2	2,205	2.5:1	882
4	3,508	14.7	68.7	54.0	3,508	2.5:1	1,403.20
5	1,903	11.3	68.7	57.4	1,903	2.5:1	761.2
6	2,173	24.6	NA	NA			
						Total Credits	3,046.40


¹USACE. 2013. Draft Pittsburgh District Guidance Document for Mitigation Bank Sites in Pennsylvania.

²Enhancement is defined as improvement to an area that is currently stream or wetland and only one or two major functions are being restored/improved. Gain in aquatic resource <u>function, but</u> does not result in a gain in aquatic resource area.

		lt)	£	(ŝ	a	9	9		8	DEP C	Compe	ensati	on Prot	ocol1
	Reach	Length (ft)	Width (ft)	Area (sf)	Area (ac)	IBI Score	Reference	Difference	>11	% Diff/100 (Cldiff)	AP	RV ²	CV ²	Cidiff	FCG
	1	4,302	13	55,926	1.284	60.9	68.7	7.8	No						0
	2	4,604	7	32,228	0.740	68.7	68.7	0.0	No						0
	3A	2,732	7	19,124	0.439	65.0	68.7	3.7	No						0
	3B	2,205	8	17,640	0.405	44.5	68.7	24.2	Yes	0.352	0.405	2.5	2.5	0.352	0.89
82	4	3,508	5	17,540	0.403	14.7	68.7	54.0	Yes	0.786	0.403	2.5	2.5	0.786	1.98
20 L.2	5	1,903	4	7,612	0.175	11.3	68.7	57.4	Yes	0.836	0.175	2.5	2.5	0.836	0.91
	6	2,173	3	6,519	0.150	24.6	68.7	44.1	NA						0
40														otal edits	3.78
	¹ PAD	EP. 2014.	Draft I	Pennsylva	ania Fun	iction B	ased C	Compe	nsatic	on Proto	col.				
n	FCG	= AP x RV	x CV x	Cldiff											
	FCG	= Functio	nal Cre	dit Gain											
	AP =	Area of P	roject	for each a	applicab	le func	tion gr	oup (ii	n acre	s, 0.00)					
	RV =	Resource	Value												
	CV = Compensation Value														
		f = Condit the projec p)				•								-	tion
	² Values determined according to criteria in Goerman (2018)														

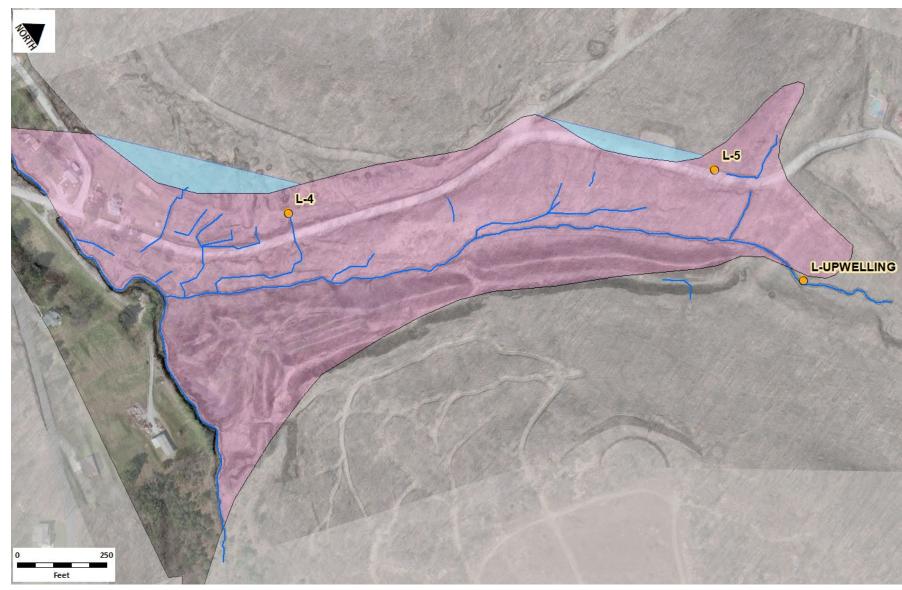

Constraints

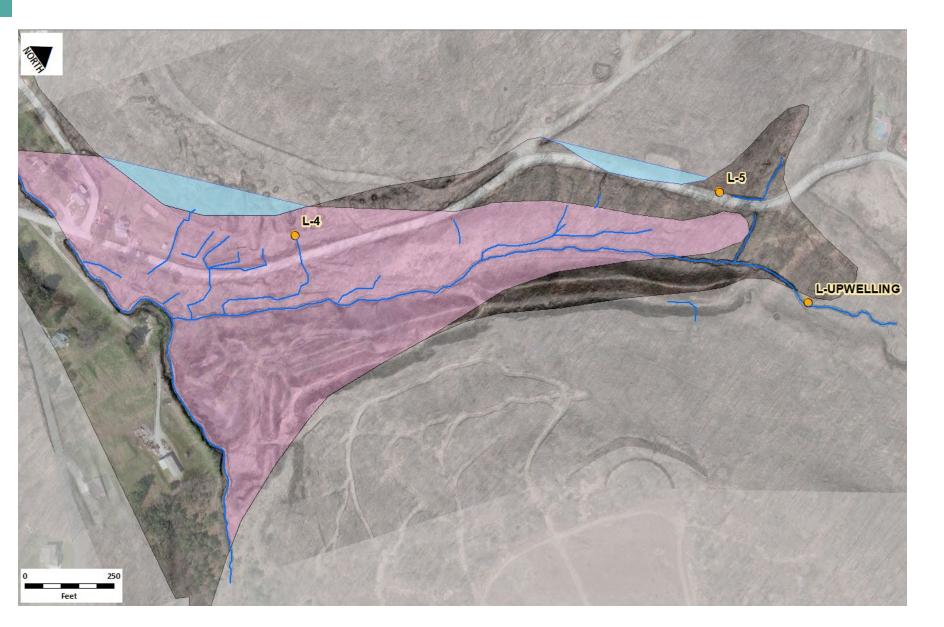
- Roadway
- Stream
- Property boundaries
- Existing wetlands
- Modeled100-yr floodway
- Stormwater management
- Relic spoil piles
- Minimum vertical relief
 - Extensive piping
 - County road crossing
- Regulatory
- Shallow hydrogeology
- Seasonal flow variation

Acidic Seeps

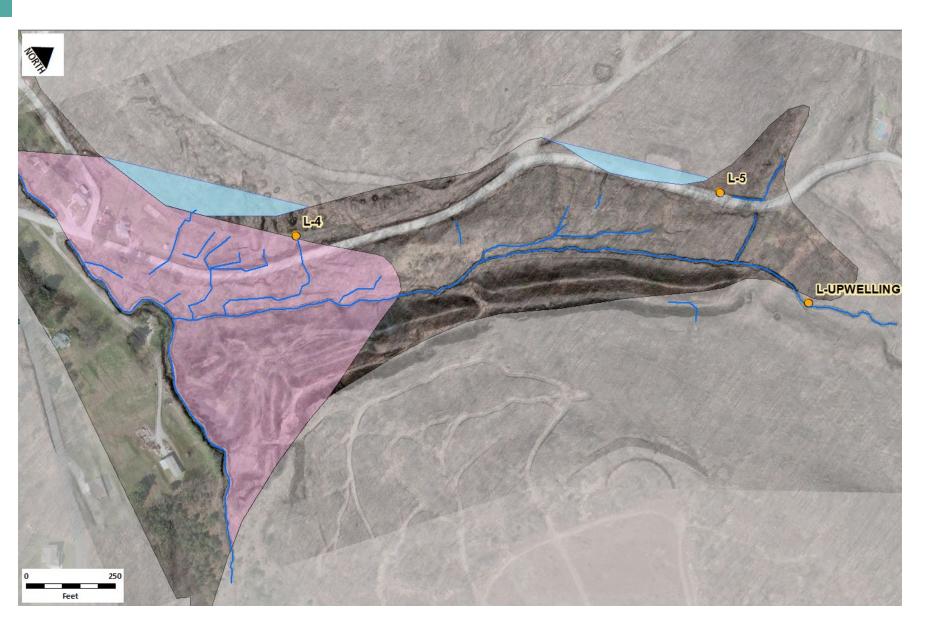
Seep Name	Acres	рΗ
Seep #1	0.001	2.70
Seep #2	NA	2.20
Seep #3A	0.057	2.82
Seep #3B	0.143	2.72
Seep #5	0.051	3.33
Seep #7	0.021	3.03
Seep #8	0.022	3.26
Seep #9	0.037	2.81
Seep #10	0.009	2.90
Seep #11	0.021	2.94

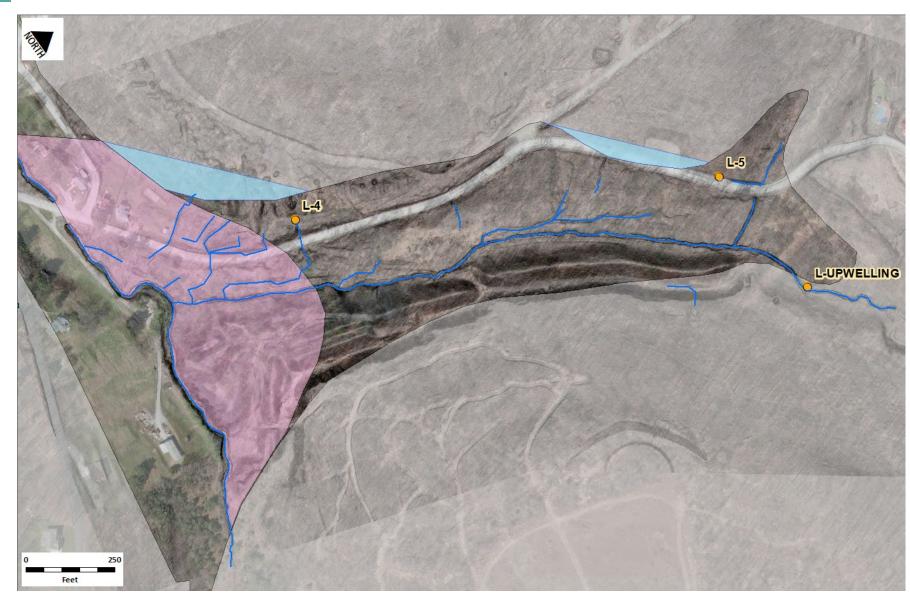
Roadside Ditches and Culverts

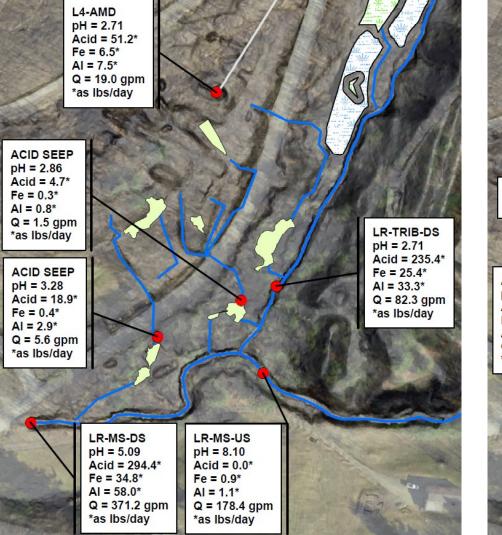

Shallow Clays

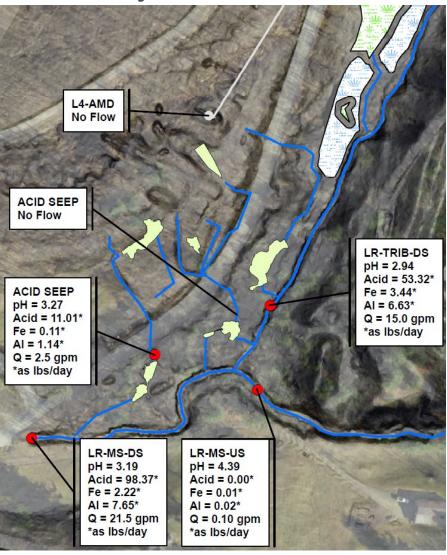

Undermining and Water Losses

- Wet season
- Saturated watershed
- AMD sources at maximum discharge
 - Combined ~130 gpm
 - Higher concentrations and contaminate loads








- Dry Season
- Dry AMD sources
- Dry upper watershed
- Saturated lower watershed
 - pH = 3.2
 - Acidity = 300 mg/L
 - Fe = 10 mg/L
 - Al = 40 mg/L

Contaminate Loads

Wet Season

Dry Season

Wet Season

Additional:

- Q: 103 gpm
- Acid: 35 lbs/day
- Fe: 8 lbs/day
- AI: 20 lbs/day

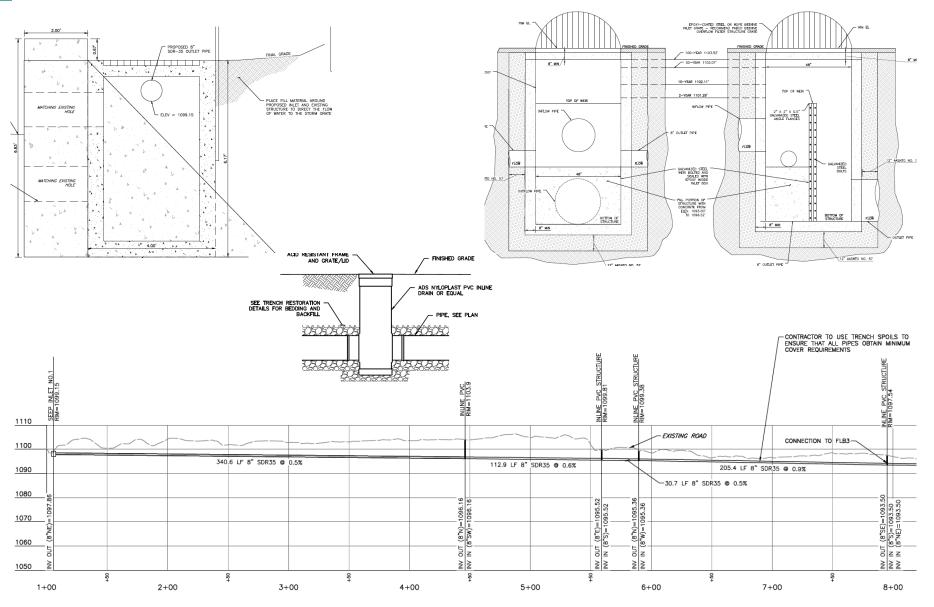
Dry Season

Additional:

- Q: 4 gpm
- Acid: 34 lbs/day
- Fe: -1.3 lbs/day
- Al: 0.14 lbs/day

Design – Site

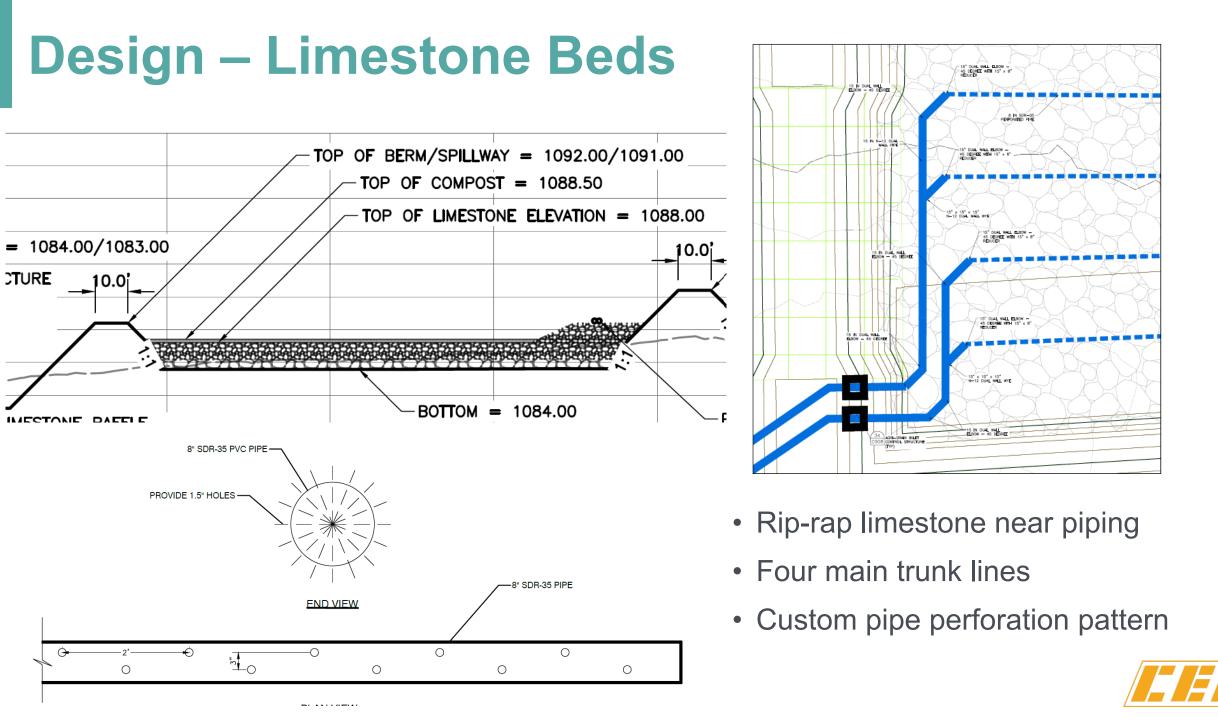
BASELINE


- Lidar and survey
- Delineations
- Water quality
- Benthic macroinvertebrates
- Rapid Bioassessment Protocol
- Geotechnical
- Hydraulic modeling

DESIGN

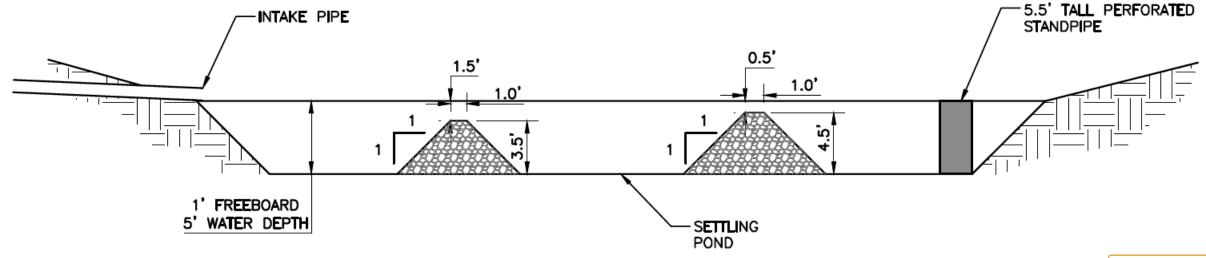
- Utilized entire available area
- Oversized BMPs
- Considered stream relocation
 - Costly and unnecessary
 - Removal of spoil piles
- Tenth-foot tolerances on elevations
- Civil 3D
 - Earthwork mass balance (7500 CY)

Design – Collection and Conveyance


Catch Basins

- L4 maintains water elevation from multiple inlets
- L5 bypasses >2-year storm event
- Bypass flows are large and dilute

Piping

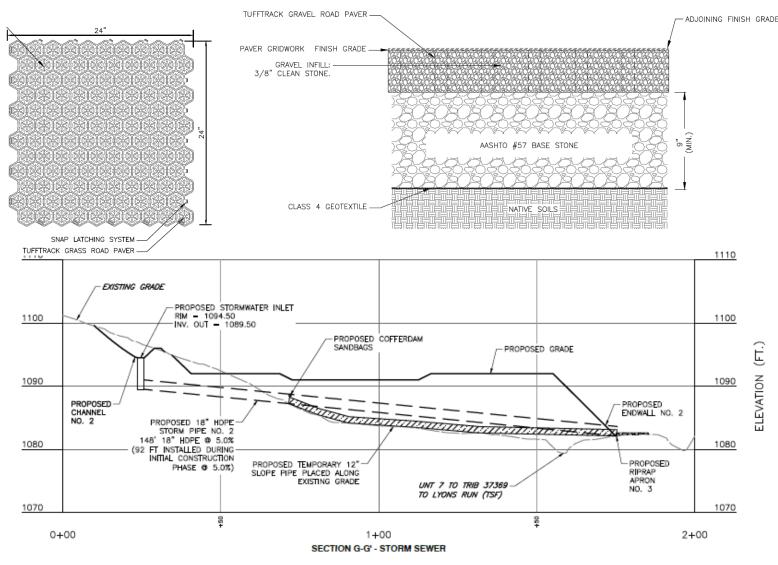

- Civil 3D Pipe Networks
- Maintain ground cover
- Assess conflicts
- Inline access structures

Design – Settling Ponds

- Settling pond sized for full flush volume of FLBs
- Gravel baffles
 - Velocity reduction
 - Zone of settling Western Regional Agricultural Center (WRAC) publication
 - Robust structure
- Perforated standpipe outlet

Design – Polishing Wetlands

- Earthen baffles
- 1-foot drops every 50-feet
- Native revegetation

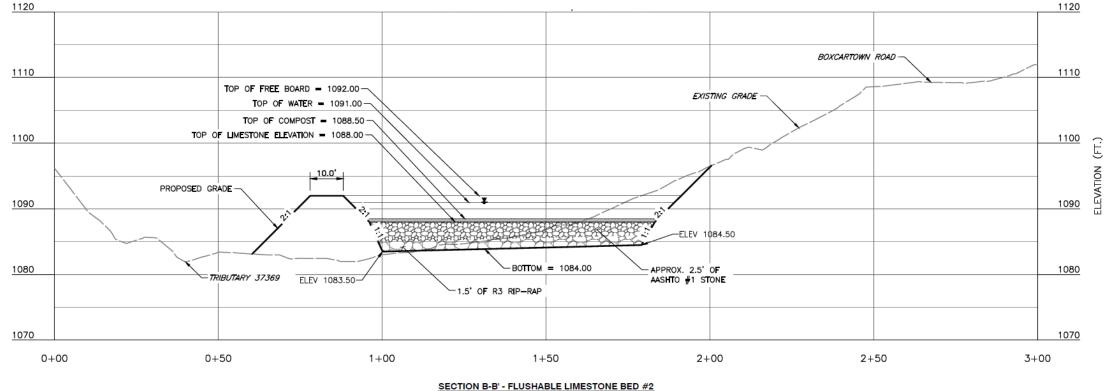

Permenant Seeding								
EASTERN NATIVE HABITAT & CREP MIX (ERNMX-173)								
Plant Spe	cies	Seed Mix						
Scientific Name	Common Name	Composition						
Andropogon gerardii	Big Bluestem	40%						
Elymus virginicus	Virginia Wildrye	25%						
Panicum virgatum	Switchgrass	15%						
Chamaecrista fasciculata	Patridge Pea	8%						
Sorghastrum nutans	Indiangrass	5%						
Rudbeckia hirta	Blackeyed Susan	3%						
Echinacea purpurea	Purple Coneflower	2%						
Heliopsis helianthoides	Oxeye Sunflower	2%						
Ter	nporary Seeding							
Secale cereale	Winter rye	Aug 15-Feb 28						
Lolium multiflorum	Annual Ryegrass	Spring or Fall						

WETLAND PLANTING SPECIFICATIONS								
Plant Community	Plant Species		Type of Plant	Unit	Planting Density	Stom Specing (feet)		
	Scientific Name	Scientific Name Common Name Mate		Unit	(units/acre)	Stem Spacing (feet)		
	Salix interior	Sandbar Willow	Live Stake	plant	545		1	
	Salix sericea	Silky Willow	Live Stake	plant	545	1	IΠ	
Shrub and Sedge Wetland	Comus amomum	Silky Dogwood	Live Stake	plant	545	4 X 4	*	
Establishment	Cephalanthus occidentalis	Button Bush	Live Stake	plant	545			
	Sambucus	Elderberry	Live Stake	plant	545			
	FACW Wetland Meadow Mi	x (ERNMX-122)	seed	pound	20		l	

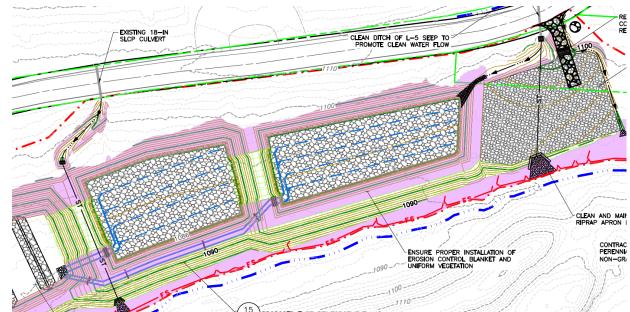
FACW WETLAND	MEADOW MIX (ERNMX-122)*	
Plant Speci	Seed Mix	
Scientifc Name	Common Name	Composition
Carex vulpinoidea, PA Ecotype	Fox Sedge	29.8%
Elymus virginicus, Madison-NY Ecotype	Virginia Wildrye	16.0%
Carex lupulina, PA Ecotype	Hop Sedge	11.0%
Carex scoparia, PA Ecotype	Blunt Broom Sedge	11.0%
Carex lurida, PA Ecotype	Lurid Sedge	8.5%
Cinna arundinacea, PA Ecotype	Wood Reedgrass	5.2%
Verbena hastata, PA Ecotype	Blue Vervain	4.0%
Juncus effusus	Soft Rush	3.0%
Asclepias incarnata, PA Ecotype	Swamp Milkweed	2.0%
Heliopsis helianthoides, PA Ecotype	Oxeye Sunflower	2.0%
Bidens cernua, PA Ecotype	Nodding Bur Marigold	1.0%
Onoclea sensibilis	Sensitive Fern	1.0%
Eupatorium perfoliatum, PA Ecotype	Boneset	0.8%
Helenium autumnale, PA Ecotype	Common Sneezeweed	0.8%
Iris versicolor	Blueflag	0.8%
Zizia aurea	Golden Alexanders	0.7%
Aster novae-angliae, PA Ecotype	New England Aster	0.3%
Aster prenanthoides, PA Ecotype	Zigzag Aster	0.3%
Eupatorium fistulosum, PA Ecotype	Joe Pye Weed	0.3%
Lobelia siphilitica, PA Ecotype	Great Blue Lobelia	0.3%
Scirpus cyperinus, PA Ecotype	Woolgrass	0.3%
Aster puniceus, PA Ecotype	Purplestem Aster	0.2%
Aster umbellatus, PA Ecotype	Flat Topped White Aster	0.2%
Penthorum sedoides, PA Ecotype	Ditch Stonecrop	0.2%
Solidago rugosa, PA Ecotype	Wrinkleleaf Goldenrod	0.2%
Mimulus ringens, PA Ecotype	Square Stemmed Monkeyflower	0.1%
*application rate 20 lb./acre		

Design – Stormwater

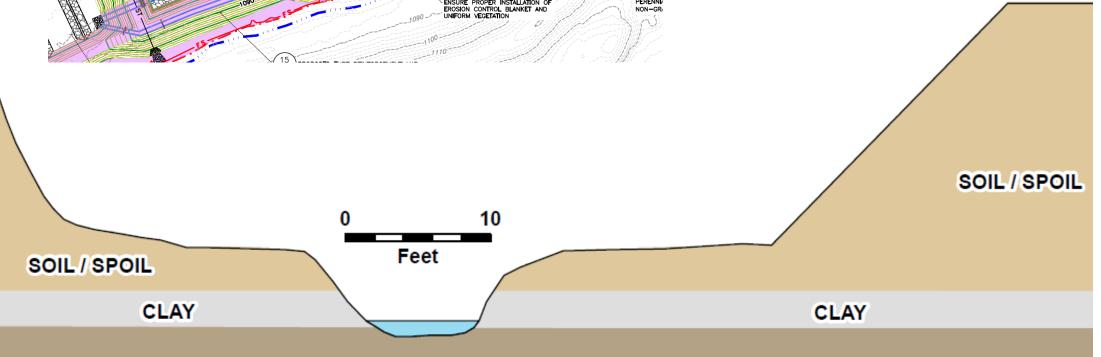
- Tuff-Track infiltration pavers
 - Reduce stormwater runoff to maintain permit compliance
- Stormwater collection and diversion through earthwork



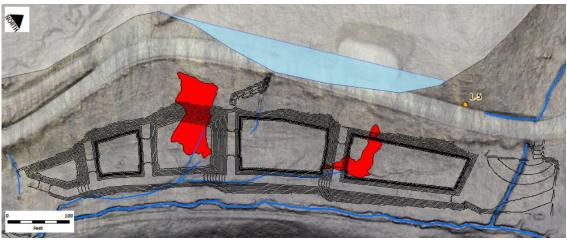
Approach - Maintenance

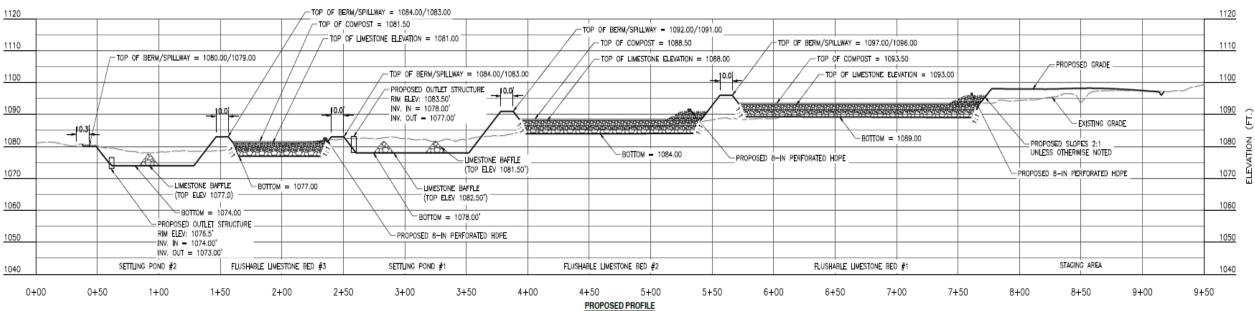

- Large permanent staging area
- 10-foot earthen berm width for construction access
- 4:1 slopes on transitions
- Sloped FLB bottoms
- Change in rock type around flush plumbing

HIGH RISK


	Risk Analysis Matrix									
Summation of Fe and	Immation of Fe and Design Flow Rate for each treatment cell									
Al Concentration	< 25 gpm	<u>> 50 < 100 gpm</u>	≥ 100 < 200 gpm							
< 5 mg/L	Low	Low	Low	Low						
≥ 5 but < 15 mg/L	Low	Medium	Medium	Medium						
≥ 15 < 25 mg/L	Low	Medium	Medium	Medium						
$\ge 25 < 50 \text{ mg/L}$	Medium	Medium	Medium	High						
<u>> 50 mg/L</u>	High*	High*	High	High						
Summation of Fe and	Design Flow Rate for each treatment cell									
Al Concentration	<u>> 200 < 400 gpm</u>	≥ 400 < 800 gpm	> 800 < 1600 gpm	<u>> 1600 gpm</u>						
< 5 mg/L	Medium	Medium	Medium	High						
≥ 5 but < 15 mg/L	Medium	High	High	High						
\geq 15 < 25 mg/L	High	High	High	High						
≥ 25 < 50 mg/L	High	High	High	High						
≥ 50 mg/L	High	High	High	High						

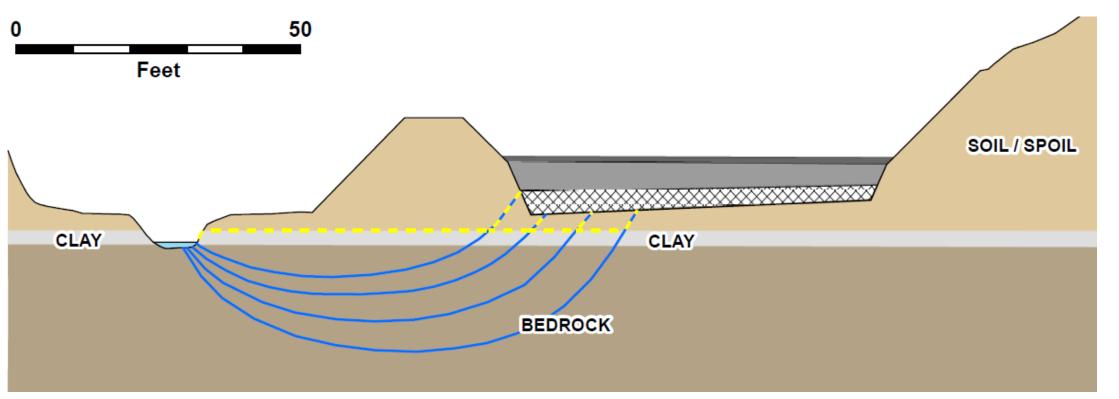
Design – Stream


- Coir fiber matting
 - Slope stabilization
- Turf reinforcement matting
 - Resist high shear stresses
- Entrenchment ratio >2.2
 - Access to floodway



Approach - Hydrogeology

- Seasonal water quality monitoring
- Unlined flushable limestone beds and wetlands
 - Allows for collection of unconsolidated seeps collection



Approach – Hydrogeology

- Unlined flushable limestone beds and wetlands
 - Leaches alkaline water into shallow groundwater
- Seasonally controlled releases from treatment
 - Full capacity ~1.5 million gallons
 - Allows for 11.5 gpm treated water discharge for three months

Approach – Spoil Piles

Outcomes and Lessons

OUTCOMES

- Improved water quality
- Improved IBI scores
- Functional uplift of Lyons Run mainstem
- Functional uplift of Tributary 37369
 - Alkaline leachate
 - Restored stormwater flow from upper watershed
- Improved aesthetics
- Signage and recreational greenway

LESSONS

- No cookie cutter sites
- Intimate and thorough site knowledge
- Seasonal observations
- Innovative approach

Thank You

Lyons Run Watershed Association

April 25, 2024