

Performance of natural and residual materials for mine water treatment and mine sites rehabilitation

Carmen M. Neculita*, Isabelle Demers*, Flavia L. Braghiroli**

*Research Institute on Mines and Environment, **Forestry Research Institute, UQAT

Morgantown, WV, April 22, 2024

Research topics

Industrial partners mine sites

https://www.uqat.ca/uqat/departements/irme/

Introduction: Mines and water contamination

	Mine drainage (runoff water)		N-based compounds (mine effluents)	
Contaminants	AMD (acid mine drainage)	NMD (neutral mine drainage)	CN⁻, SCN⁻	Ammonia (NH ₃ -N)
Sources	Metal sulfides + O ₂ + water		Au, Ag extraction + blasting agents (ANFO)	
Characteristics	pH < 3; high [] metals (Fe >1g/L), sulfates	Metal [] > criteria	Ore dependent, but [] > criteria	
Why prevent or treat?	Regulation, environmental and social impacts			
Challenges	Several contaminants	High contaminant mobility	Complexity (toxicity, costs, flowrates)	
Treatment issues	Sludge management (quantity, stability)	Limited knowledge	Low kinetics of N oxidation	
Research work (RIME)	Use of natural and residual materials (raw vs modified) for prevention and control of mine water contamination, and mine sites rehabilitation			

Natural and residual materials for mine water treatment and sites rehabilitation

Case study	AMD/NMD prevention	Passive treatment
I: East-Sullivan mine site	Residual organics cover	Constructed wetlands + water pumping through the organic cover
II: Manitou mine site	Desulfurized non-acid generating tailings cover	(To be designed and constructed)
III: Wood-Cadillac mine site	Inert sand-based cover	Wood-based biofilter
IV: Lorraine mine site	CCBE (cover with capillary barrier effect) – multi-layer	Anoxic dolomite drains + tri-unit biochemical train

V: New materials	Modification / Improvement	Use	
Charred dolomite	Enhanced specific surface and porosity, increased pH	Synthetic NMD treatment	
Modified wood ash	and alkalinity generation	Real NMD treatment	
Activated biochar	Porosity arrangement	Real AMD treatment	
N-rich residuals	N/A	Non-acid generating tailings revegetation	

- Ongoing research
- Concluding remarks

Location of East-Sullivan and Manitou mine sites

East-Sullivan mine site: operation, abandonment, rehabilitation

(http://sebastienlavoie.com/maitrise/photos.html; http://www.mrn.gouv.qc.ca/mines/restauration/restauration-sites-east-sullivan.jsp; https://www.oiseauxduquebec.org)

East-Sullivan organic cover: mine site rehabilitation

- 1984: Organic waste (residual wood and biosolids) cover instalment for AMD prevention and [temporary] treatment
- **1990:** Seepage collection system
- 1992-1996: Confining dike (6 km) + water polishing in constructed wetlands
- 1998-2005: Collected AMD in constructed wetlands pumping through the organic cover
- \circ **2019-2020:** Wood cover completion
 - \Rightarrow Some effluents were still acidic

Figure 1. Map of the East Sullivan tailings impoundment in 1994

East-Sullivan organic cover: mine site monitoring

- Network of sampling points
 - over 20-year data
- Parameters analyzed
 - pH, Fe, Cu, Zn (+ Al, Mn, Pb, SO₄²⁻)
- Compliance, except for the last covered tailings

• Covered tailings and constructed wetlands: **blooming vegetation** and **birds' refugee** (> 190 species listed)

(Rakotonimaro et al., 2015; Malki & Roy, 2024; https://www.google.ca/flickr.com)

Desulfurized tailings cover: Manitou mine

II

Prevention and pretreatment of AMD (pH: 2-3; 10-12 g/L Fe; 0.6-1 g/L Zn; 0.1-1 g/L Cu; 30-40 g/L SO₄²⁻)

Research Institute of Mines and Environment

Sand cover + wood-based biofilter: Wood-Cadillac mine site

Efficient passive treatment of As-NMD: removal of As & metals; decrease of SO₄²⁻ [] to < 200 mg/L

(Germain & Cyr, 2003; Libéro, 2007; Mehdaoui et al., 2024; Thevenot et al., 2024) 11

CCBE + passive treatment: Lorraine mine site

outlet

- 1964-1968: Extraction of Cu, Au, Ag, and Ni 0
 - Acid generating tailings: 15.5 ha (up to 6 m) \succ
 - AMD: pH=3.6, 7 g/L Fe and 15 g/L sulfates \succ
- In 1998: Mine site reclamation 0
 - Multi-layer dry cover with capillary barrier effect (**CCBE**): O₂ prevention \geq
 - AMD treatment: 3 anoxic dolomite drains (Dol-1 to Dol-3)

- In 2011: Dol-3 clogged, replaced by tri-unit system: PBR1-WA-PBR2 0 (AMD: pH < 4, 3g/L Fe)
 - PBR1: 40% organics, 60% inorganics (pH /, sulfate removal) \geq
 - WA: 100 % wood ash (Fe treatment) \triangleright
 - PBR2: 77% organics, 23 % inorganics (polishing)

(Jouini et al., 2022)

• Tri-unit system progressive loss of efficiency: PBR1-WA-PBR2

> **Porosity clogging** by Fe minerals

 \triangleright

 \geq

 \geq

10" 10"

> Preferential flow and partial water bypassing the system

FM (x2)

20000

16000

12000

2000

13

1 polishing unit (50% calcite + 50% wood chips)

2 Fe pretreatment units (50% wood chips + 50% wood ash)

LM-2

LM-1

LM-3

10000

8000

(J/gm)

S042

New materials: Sources and modification procedures

	Parameter		Composition (%)		
Material	pH _{paste}	Porosity	Dolomite [CaMg(CO ₃) ₂]	Calcite [CaCO ₃]	Magnesia [MgO]
Raw dolomite	7.9	0.44	87.1	BDL	BDL
Half-charred dolomite	11.6	0.56	7.2	53.7	19.9

• Half-charred dolomite: dolomite content decreased, two new minerals were created

Parameter	Ash B	Ash B modified	Ash W	Ash W modified
pH _{paste}	13.8	12.6	9.3	12.8
CEC, meq /100g dry	138	322	66	311

• Wood ash: modification generated high CEC and paste pH new materials

Step 2: Activation (chemically: KOH, H_3PO_4 or physically: steam, CO_2)

Activated biochar: arranged porosity

Step 1: Torrefaction, slow to flash pyrolysis, or gasification under different operating conditions

(Calugaru et al., 2016-2020; Braghiroli et al., 2018)

14

Raw vs modified dolomite: Ni, Zn removal in synthetic NMD

• Significantly better efficiency of charred dolomite for Ni and Zn removal (50 mg/L each)

Va

Raw vs modified wood ash: Ni, Zn removal in real NMD

Effluent #1 (pH 7.89, 3.71 mg/L Ni)

Ni removal (<0.5 mg/L)

2h for both modified ash (MAB & MAW)

- Effluent #2 (pH 6.85, 9.1 mg/L Zn)
 - Zn removal (<0.5 mg/L)
 - \circ 2h for MAB
 - 7 days for MAW (93% within 2h), but 2h for Mn removal (99% of 4.2 mg/L)

(Calugaru et al., 2017)

Activated biochar: Cu removal in real AMD

• KOHBBS: Efficient for Cu removal in real effluents

S_{BET} = 1700 m²/g; 100% de micropores; 22.4% oxygenated groups

Parameter	Real AMD (mg/L)	After adsorption (KOHBBS) (mg/L)	Efficiency (%)
Со	9.4	0.5	95 🗸
Cu	1.75	0.006	~ 100 🗸
Fe	468	405	13 🗸
Mn	10.9	9.7	11 ↓
Pb	0.14	0.08	43 ↓
Zn	4.9	4.6	6↓

17

(Braghiroli et al., 2019)

N-rich residuals use in tailings revegetalization

Vb

Summary of main findings

N-rich zeolite

- <u>Plant biomasses</u> like tailings alone
- Foliar Na concentrations
 6-9 times higher than in other treatments

MBBR Biomass

- <u>Plant biomasses</u> like fertilized tailings and topsoil
- High Se concentrations in leaves

Better performance

18

 Foliar N concentrations and <u>root biomasses</u> failed to discriminate between the two tested types of amendment

VS

QAT-POLYTECHNIQUE Research Institute of Mines and Environment

(Saint-Aimé et al., 2023)

Ongoing research

Scientific knowledge for informed new practical applications

- **Organic cover**: is elevated water table required? Is water pumping through the cover necessary?
- Low-sulfides no-acid generating tailings cover: evolution and fate of potential contaminants under oxic vs anoxic and abiotic vs biotic conditions
- Passive NMD treatment in residual organics-based biofilters: contaminants removal mechanisms and residues stability*
- Raw vs half-charred dolomite: prevention of AMD generation from pyrrhotite-rich tailings and passive polishing
- **N-rich residuals from mine water treatment**: potential of surrounding environment contamination (uptake by vegetation, runoff)

Concluding remarks

- Successful rehabilitation approach for oxidized tailings on mine sites (precious and base metals) must combine prevention (tailings covering) and passive treatment
- **Residual materials valorization** (already available on or in the proximity) limits disposal concerns, environmental footprint, and mine sites rehabilitation costs
- Materials (natural and residual): efficient in mine tailings covers for AMD prevention or transformed, with promising results in contaminated mine water treatment
- Metal recovery, whenever feasible, could decrease water treatment costs
- Pilot scale production and testing of modified materials is limited
- Metal recovery, sorbent and treated water reuse, are rarely addressed

20

Selected references

- 1. Braghiroli, F.L., Bouafif, H., Neculita, C.M., Koubaa, A., 2019. Performance of physically and chemically activated biochars in copper removal from contaminated mine effluents. Water Air Soil Pollut 230: 178.
- 2. Braghiroli, F., Bouafif, H., Neculita, C.M., Koubaa, A., 2018. Activated biochar as an efficient sorbent for organic and inorganic contaminants in water. Water Air Soil Pollut 229(7): 230.
- 3. Calugaru, I.L., Genty, T., Neculita, C.M., 2021. Treatment of manganese, in the presence or absence of iron, in acid and neutral mine drainage using raw vs half-calcined dolomite. Miner Eng 160: 106666.
- 4. Calugaru, I.L., Neculita, C.M., Genty, T., Zagury, G.J., 2020. Removal and recovery of Ni and Zn from neutral mine drainage by thermally activated dolomite and hydrothermally activated wood ash. Water Air Soil Pollut 231: 226.
- 5. Calugaru, I.L., Neculita, C.M., Genty, T., Zagury, G.J., 2018. Metals and metalloids treatment in contaminated neutral effluents using modified materials. J Environ Manage 212: 142-159.
- 6. Calugaru, I.L., Neculita, C.M., Genty, T., Bussière B., Potvin, R., 2017. Removal of Ni and Zn in contaminated neutral drainage by raw and modified wood ash. J Environ Sci Health 52(2): 117-126.
- 7. Calugaru, I.L., Neculita, C.M., Genty, T., Bussière B., Potvin, R., 2016. Performance of thermally activated dolomite for the treatment of Ni and Zn in contaminated neutral drainage. J Hazard Mater 310, 48-55.
- 8. Germain, D., Tassé, N., Cyr, J. (2009) The East-Sullivan mine site: Merging prevention and treatment of acid mine drainage. BC MEND ML/ARD Annual Workshop, 15p.
- 9. Neculita, C.M., Pabst, T., 2020. Circular economy applied to mining reclamation. 7th Int Symp Mine Reclamation, MIRECO, November 5-6, 2020.
- 10. Nordstrom, K., Blowes, D.W., Ptacek, C.J., 2015. Hydrogeochemistry and microbiology of mine drainage: An update. Appl Geochem 57: 3–16.
- 11. Rakotonimaro, T., Roy, T., Lacroix, R., Trudel, S., Neculita, C.M., 2015. East Sullivan mine site restoration: Current success and perspective. Goldschmidt, Prague, Czech Republic, August 16-21.
- 12. St-Aimé, R., Guittonny, M., Neculita, C.M., 2023. Valorization potential of ammonium-rich zeolite and MBBR biosolids in the revegetation of non-acid-generating gold mine tailings. Sci Total Environ 891: 164279.

Thank you!

Merci!

CCBE + passive treatment: Lorraine mine site

Free water

1964-1968 : extraction of Cu, Au, Ag, Ni

acid-generating tailings: 15.5 ha (up to 6 m)

AMD: pH 3.6, 7 g/L Fe, 15 g/L sulfate

2000: CCBE + 3 dolomitic drains

Geochemical stability of Passive treatment system AMD Treated to be treated AMD PBR1 PBR2 In out in out in Out Sampling and environmental behavior evaluation Limits Stabilization/Solidification of post-treatment residues Post-treatment residues excavation s/s with GU s/s with GU/GGBFS s/s w Rain

AMD treatment solids

Leaching

Plant material and growing conditions

¹(Guittonny, 2021; Tordoff et al., 2000)

²(Guittonny, 2021)

³(Wiggans et Frey, 1955)

25