Upper He Creek hydraulic and hydrogeologic control solutions in east central Tennessee Terry W. Schmidt Vice President of Engineering Earthres Group, Inc., Philadelphia, USA, <u>tschmidt@earthres.com</u> Presented at WVTF & IMWC April 22, 2024 Philadelphia Region Appalachian Region www.earthres.com # **Project Location** #### **Background** - Sequatchie Valley Coal Corporation (SVC) Main Area - 1,000+ acre area dragline mine - Owned by Navajo Transitional Energy Company (NTEC) - Surface coal mine reclamation site since 1992 - Primarily pumping to control GW with active treatment - Discharges to Upper He Creek # Navajo Transitional Energy Company Sequatchie Valley Coal Corporation (SVC) LEGEND # Navajo Transitional Energy Company SVC Main Area – Upper He Creek #### **Water Management Evaluation Goals** - Define source and quantity of water exposed to acid bearing minerals - Determine how water moves through the site - Provide insight regarding how to - reduce water infiltration - improve treatment success - manage groundwater levels - Provide a tool to measure costs versus benefits #### **Watershed Drainage Areas** - Big He Creek (1,310 acres) - 640 acres from permit areas + 670 acres from other areas - Little He Creek (1,050 acres) - 400 acres from permit areas + 650 acres from other areas - He Creek (2,750 acres) - 1085 acres from permit areas (40%) + 1665 acres from other areas - Other areas include abandoned mined land and forest #### **Water Balance Parameters** - Precipitation - Surface Runoff - Evapotranspiration (ET) - Infiltration - Pumping Withdrawals - Change in Groundwater Storage - Groundwater Inflow #### **Monitoring Stations** - 1 Weather Station (Precipitation) - 7 Surface Water Flow Stations - 3 stream flow stations - 3 pump flow stations - 1 gravity flow discharge station - 5 Groundwater Level Stations - 1 Evapotranspiration Lysimeter - Monitored 3/15/12 10/11/12 (10 min intervals) ### **Weather Station** # AVERAGE PRECIPITATION (Source: University of Tennessee, Institute of Agriculture) #### **Precipitation Summary From Weather Station** ### **Example - Big He Creek Monitoring Station** #### **Stream Flow Gauge Rates Summary** #### **Stream Runoff %** # TABLE 3 PRECIPITATION AND RUNOFF FROM ALL DRAINAGE SHEDS DURING THE STUDY PERIOD IN INCHES | | STUDY PERIOD
(210 DAYS MID-MARCH THROUGH MID-OCTOBER) | | | | | |-------------------------|--|-------------------------------|--------------------|--|--| | | BIG HE CREEK
(SW-13) | LITTLE HE
CREEK
(SW-14) | HE CREEK
(SW-4) | | | | Precipitation [in (cm)] | 31.1 (79.0) | 31.1 (79.0) | 31.1 (79.0) | | | | Runoff [in (cm)] | 6.5 (16.5) | 8.3 (21.0) | 8.5 (21.5) | | | | Recharge + ET [in (cm)] | 24.6 (62.6) | 22.8 (58.0) | 22.7 (57.6) | | | | Runoff (%) | 20.8% | 26.6% | 27.2% | | | | Recharge + ET (%) | 79.2% | 73.4% | 72.8% | | | ### **Evapotranspiration** #### PRECIPITATION AND ET #### **INFILTRATION** # TABLE 6 AVERAGE ANNUAL ESTIMATED INFILTRATION (Recharge + ET) – ET = Infiltration Recharge | | BIG HE CREEK
(SW-13) | LITTLE HE
CREEK (SW-14) | HE CREEK
(SW-4) | |---------------------------------|-------------------------|----------------------------|--------------------| | Recharge + ET [in (cm)] | 48.3 (122.7) | 44.8 (113.7) | 44.4 (112.8) | | ET [in (cm)] | 28.0 (71.1) | 28.0 (71.1) | 28.0 (71.1) | | Infiltration Recharge [in (cm)] | 20.3 (51.5) | 16.8 (42.6) | 16.4 (41.7) | #### **Groundwater Monitoring** #### **WATER BALANCE** ### TABLE 8 ANNUAL WATER BALANCE RESULTS | | PRECIPITATION | RUNOFF | ET | INFILTRATION | |-----------------|----------------|--------------|---------------|--------------| | | GPM (M³/min) | GPM (M³/min) | GPM (M³/min) | GPM (M³/min) | | BIG HE CREEK | 4,128 (15,624) | 860 (3.26) | 1,895 (7.17) | 1,373 (5.20) | | LITTLE HE CREEK | 3,309 (12,525) | 880 (3.33 | 1,519 (5.75) | 910 (3.45) | | HE CREEK | 8,667 (32,805) | 2,356 (8.92) | 3,978 (15.06) | 2,332 (8.83) | | | IN (CM) | IN (CM) | IN (CM) | IN (CM) | | BIG HE CREEK | 61.0 (154.9) | 12.7 (32.3) | 28.0 (71.1) | 20.3 (51.5) | | LITTLE HE CREEK | 61.0 (154.9) | 16.2 (41.2) | 28.0 (71.1) | 16.8 (42.6) | | HE CREEK | 61.0 (154.9) | 16.6 (42.1) | 28.0 (71.1) | 16.4 (41.7) | #### **WATER BALANCE** #### **Convert Infiltration to Runoff – Hydraulic Controls** - Pumping and treatment system flow path improvements - Remove unlined (leaky) basins - Route runoff directly to streams where possible ### **Pumping and Treatment System Flow** - Average Pumping Rate 1,000 GPM +/- - Average Discharge Rate 700 GPM +/- - Pump water losses 300 GPM +/- - Average 30% recycle through infiltration (>1/3 loss seasonally) - Hydraulic Improvement 1 re-route to avoid infiltration points - Hydraulic Improvement 2 extend discharge pipe/line channel #### Remove Unlined (leaky) Basins - Basin 2-2-006 (Completed 2013/2014) - Basin 2-001 (Completed 2014) - Basin 2-002C (Completed 2014) - Basin 2-2-001A (Completed 2015) - Basin 2-2-001D and E Reclamation (Future) #### 2-2-006 Removal, (129 acres) 2-2-001 Removal 2-002C Removal, 2-002D Prior Removal # Basin 2-2-006 Removal Example 129-acre drainage area ### **Basin 2-2-006 Channel Failure & Repairs** #### Route Runoff Directly to Streams (>250 acres) # Hydrogeologic Considerations After path corrections/basin removals - Rainwater Infiltration << Pumping volume (MODFLOW 2015+/-)</p> - Additional pumped water originates from groundwater source - Groundwater flow is generally north to south - Could clean groundwater be intercepted before entering the backfill and becoming contamination? - Geophysical techniques employed to evaluate ### 2004 Airborne Geophysical Survey - RESOLVE ## **ER Geophysical Investigation - 2017** # Geophysical Testing on Adjoining Property in and Adjacent to permit boundary SUPERSTING RS IP Earth Relativistic Means RS IP Earth RELATIVISTIC MEANS SUPERSTING RS Figure 3. AGI Supersting RES/IP Meter Figure 4. Complete equipment collecting data on Line 4, SVC Site Dunlap, TN Figure 2. ERT setup on Line 3 SVC Site, Dunlap, TN # Electrical Resistivity Cross-Section However, test drilling postponed – property control change ## Hydrogeologic Solution Evaluated - 2018 Class I or Class V Injection Well Permit - Class I likely cost prohibitive and not pursued - Class V potentially feasible option - Class V injection well feasibility study completed - Owner investment went toward pumping system improvements instead of a higher risk injection well permit following a 2018 regulatory meeting # Permittee (Cloud Peak Energy) filed for Chapter 11 Bankruptcy - 2019 - Activities slowed as cash flow was low 2018-2019 - All activities other environmental compliance were suspended until further notice when bankruptcy filed - On-going basin inspections, pumping, and treatment are part of environmental compliance - Navajo Transitional Energy Company (NTEC) took over late 2019 # Backfill Water Level Observations and Subsequent Plan of Action - Backfill water levels tracked for decades - Seasonal variances could exceed 30 feet (10 meters) - Pumping system rates at both field < peak infiltration - Addition pumping capacity recommended at both fields - NTEC agreed and pursued additional pumping capacity ### Northern and Southern Pumping Fields #### **Pumped Water Treatment Flow Diagram** ## Navajo Transitional Energy Company Dewatering Well Capacity Investments - 2020-2022 Catch up on routine maintenance activities - Basin Cleanouts, Treatment System Modifications, etc. - 2022 drilled new production well at Northern Field - 2023 drilled new production well at Southern Field - Due to supply chain issues, activation of wells delayed until mid-2023 NWF and late 2023 SWF #### **Northern and Southern Production Wells** - Typical SVC dewatering wells 15 HP pumps - New wells used 8-inch perforated casing for 80 feet - Gravel filter pack used versus sand filter pack - New 30 HP pumps for 200 GPM+/- design - Single phase power with 3-phase converter box #### Northern and Southern Groundwater Elevations - Drawdown aided by near draught conditions late 2023 through early 2024 - Pumping capacity increased by 200 GPM+/- at each field - Backfill groundwater elevation reached 30-year low #### **Northern Well Field Elevations and Flows** #### **Southern Well Field Elevations and Flows** #### Southern Well Field Flow vs. Water Elevation #### **Groundwater Elevations Goals 2024** - Select optimum groundwater elevations - Allow adequate storage for equipment or power failure - Hold groundwater elevations constant (as possible) - Reduce DO introduction to backfill groundwater #### **Thanks** - Navajo Transitional Energy Company (NTEC) for willingness to share data - Office of Surface Mining - Tennessee Department of Environment and Conservation - Current/prior owners for opportunity to work at SVC on interesting and challenging projects for over 30 years Philadelphia Region Appalachian Region www.earthres.com