# The Engineering of Truly Passive Mine Water Treatment Systems using Recycled Concrete Aggregate

Adrian Brown P.E.

Adrian Brown Consultants, Inc.

Denver, Colorado, USA

abrown@abch2o.com







# The opportunity – Gold King Mine (August 15, 2015)



Gold King Mine portal, post-blowout



Animas River downstream of Gold King Mine, post-blowout





# The need, the solution, the difficulty, and the plan



- The Need Truly passive AMD treatment
  - A treatment method for Acid and Metalliferous Drainage (AMD) that is passive, simple, long-term, cheap, and sustainable
- The Solution Recycled Concrete Aggregate (RCA)
  - Passive: timed release of the alkalinity in old concrete
  - Simple: pass AMD through RCA
  - Long-term: slow leach rate gives long life
  - Cheap: low cost and local short haul
  - Sustainable: recycled material with no waste
- The Difficulty Feasibility
  - Nobody has made it work long-term
- The Plan Learn how to make it work
  - Run actual AMD through actual RCA
  - Vary treatment rate and method till it works long-term





#### Method #1 – Batch Testing









## Method #2 – Column Testing









# Method #3 – Field Testing



pH & EC FLOW CELL

















Recycled Concrete Treatment Engineering - 7

WVTF

2024



# RCA successfully removes MOCs from AMD.







# AMD treatment requires small particles of RCA





**Recycled Concrete Treatment Engineering - 9** 

Adrian Brow

# AMD treatment best with upflow through the RCA









# RCA treatment of AMD does not clog the RCA medium.











#### AMD treatment does not blind the RCA







#### **RCA treatment does not create deleterious short-circuits**











# **RCA treatment of AMD retains treatment products**







## **RCA treatment of AMD produces alkaline discharge**







# **RCA treatment of AMD permanently sequesters MOCs**

| ELEMENT | PRE-TEST F | POST-TEST |
|---------|------------|-----------|
|         | mg/kg      | mg/kg     |
| AI      | 49,600     | 60,300    |
| As      | <1,020     | <202      |
| Cd      | <41        | <40       |
| Са      | 71,100     | 42,100    |
| Cu      | <51        | <51       |
| Fe      | 17,800     | 17,700    |
| Pb      | 384        | <152      |
| Mg      | 2,690      | 6,620     |
| Mn      | 393        | 654       |
| К       | 32,200     | 29,500    |
| Na      | 15,300     | 18,200    |
| S       | 2,530      | 2,060     |
| Zn      | <102       | 1,580     |





| ANALYTE |      | Influent | Effluent |
|---------|------|----------|----------|
| pН      |      | 6.2      | 8.1      |
| Al      | mg/L | 0.09     | <0.05    |
| As      | mg/L | 0.298    | <0.04    |
| Cd      | mg/L | 0.0469   | <0.008   |
| Cu      | mg/L | 0.164    | <0.01    |
| Fe      | mg/L | 47.5     | 1.58     |
| Pb      | mg/L | < 0.03   | <0.03    |
| Mn      | mg/L | 15.5     | 3.78     |
| S       | mg/L | 566      | 517      |
| Zn      | mg/L | 23.8     | 0.608    |





#### Design

- 1. Determine AMD flow rate (Q) requiring treatment; sample and analyze.
- 2. Determine RCA to be used for passive treatment; sample and analyze.
- 3. Perform batch or (better) field tests to determine:
  - a. Retention time (t) for your RCA to treat your AMD to remove MOCs.
  - b. Porosity (n) of your RCA from volume of AMD to flood the RCA.
  - c. Dry density ( $\rho$ ) of your RCA by dividing mass by volume of test solids.
- 4. Calculate the amount of RCA that is required for your passive treatment system using the data that you have just obtained:

 $Total \ volume \ of \ RCA \ (V) = \frac{Treatment \ flow \ rate \ (Q) \times Retention \ time \ (t)}{Porosity \ of \ RCA \ (n)}$ 





- Based on testing as described above, a treatment system might the following characteristics:
  - Treatment Flow Rate (Q) ~1,000 m<sup>3</sup>/day (~200 USgpm)
  - Critical Retention Time (t) ~ 4 days
  - Porosity of RCA (n) ~

$$\sim 4 \text{ days}$$
  
 $\sim 45\%$ 

• The critical volume of RCA required to treat this AMD is computed using the above equation:

• Critical volume of RCA 
$$\approx \frac{1000 (m^3/day) \times 4 (days)}{45 (\%)} \approx 9,000 (m^3)$$





# Conclusion

Long-term truly passive treatment of acid and metalliferous drainage (AMD) by treatment systems using recycled concrete aggregate (RCA) is feasible, provided the following guidelines are adopted:

- 1. Small RCA particle size (2 20 mm).
- 2. Large RCA mass (thousands of tonnes).
- *3. Long contact between the AMD and the RCA* (1 to 15 days).
- 4. Minimal contact of AMD with the atmosphere (upflow).
- 5. Simple treatment system hydraulics (no pipes).





FOR MORE INFORMATION CONTACT:

ADRIAN BROWN P.E. ADRIAN BROWN CONSULTANTS, INC. 132 WEST 4<sup>TH</sup> AVENUE DENVER, COLORADO 80223 USA

www: abch2o.com

eMail: abrown@abch2o.com

Phone: +1-303-324-2921



