Mitigation Measures for the Acid Mine Drainage Emanating from the Sabie Goldfield: Case Study of the Nestor Mine

> R. Lusunzi, F. Waanders, E. Fosso-Kankeu, K.T.R. Netshitungulwana

West Virginia Mine Drainage Task Force Symposium & 15th International Mine Water Association Congress, Morgantown, WV, USA

Disclaimer

The information contained in these documents is the sole property of the Council for Geoscience and all rights are reserved. The information is intended solely for the recipient and is confidential. Any use of this information by any person, including the recipient, and any further dissemination or disclosure of the information, either in whole or in part, is prohibited except with the prior written consent of the Council for Geoscience. The opinions expressed are in good faith and while every care has been taken in preparing these documents, the Council for Geoscience makes no representations and gives no warranties of whatever nature in respect of these documents, including, but not limited to, the accuracy or completeness of any information, facts and/or opinions contained therein. The Council for Geoscience, its Board, employees and agents cannot be held liable for the use of and reliance on the opinions, estimates, forecasts and findings in these documents.

Outline

- Introduction
- Objectives
- Methodology
- Results
- Conclusions

Introduction

- The increased accumulation of trace elements in soils due to anthropogenic activities poses a risk to the health of humans and the ecosystem: for
- Biological diversity
- Water resources
- Metals accumulate in sediments from both natural and anthropogenic sources
- Geochemical studies have been conducted on the Sabie Goldfields mine tailings storage facilities (MTSF) (Lusunzi et al., 2017, 2018, & 2019).
- This study aimed at developing mitigation measures for the AMD emanating from the Nestor MTSF.

Sabie-Sand Catchment

Location of the Sabie River Catchment

Council for Geoscience

Nestor MTSF in the Sabie Area

Council for Geoscience

Geological Setting of the Sabie River System

Council for Geoscience

Objectives

- Developing mitigation measures for the AMD emanating from the Nestor MTSF using materials from the Glynns Lydenburg MTSF
- To provide extensive data sets for future initiatives such as mathematical modelling of AMD

Methodology

- Sampling
- Tailings from the Nestor and Glynns Lydenburg MTSFs
- Top 0-5 cm layer using a plastic scoop (20 kg)

Analyses

- Acid-base accounting: acid-production potential and acid-consumption potential of tailings

- X-Ray Diffraction: mineralogical composition

Geochemical Results

Sample ID	Paste pH	ANC (kgH ₂ SO ₄ /t)	Sulfur (Total)	MPA (kgH ₂ SO ₄ /t)	NAPP (kgH ₂ SO ₄ /t)	Ratio _{ANC/MPA}
NTS	2.5	0	0.43	13	13	0
GTS	7.7	184	0.07	2	-182	92
COM25	5.1	56	0.34	10	-46	6
COM50	6.1	96	0.25	8	-88	12

Acid Base Accounting Results

Sample ID	Paste pH	ANC (kgH₂SO₄/ton)	Sulfur _(Total)	MPA (kgH₂SO₄/ton)	NAPP (kgH ₂ SO ₄ /ton)	R _(ANC/MPA)
NTS	2.5	0	0.43	13	13	0
GTS	7.7	184	0.07	02	-182	92
COM25	5.1	56	0.34	10	-46	06
COM50	6.1	96	0.25	08	-88	12

Acid Buffering Characteristic Curve (ABBC)

Acid Base Accounting Results...

Sample ID	ANC (ABA) (kgH₂SO₄/ton)	ANC (ABBC _{pH=2.5}) (kgH ₂ SO ₄ /ton)	ANC (ABCC _{pH=4}) (kgH ₂ SO ₄ /ton)
COM25	56	53	35
COM50	96	87	77
GTS	184	170	155

Acid Base Accounting Results...

Sample	NAPP (kgH ₂ SO ₄ /ton)	NAG-pH	Classification
NTS	13	2.7	PAF
COM25	-46	4.9	NAF
COM50	-89	5.0	NAF
GTS	-182	5.9	NAF

Mineralogical composition

Sample ID	Quartz	Mica	Dolomite	Pyrite	Goethite
NTS	80.5	17.9	ND	0.1	1.5
GTS	59.7	8.0	29.4	ND	2.9

Conclusions

- Rehabilitating the Nestor MTSF should be the top priority.
- Location and geochemistry: Glynns Lydenburg MTSF tailings could be used as a cover for potential vegetation growth in the Nestor MTSF.
- Benefits: cost-effective and local community empowerment.
- Limitations: gold assay was not performed.

THANK YOU

