

A workflow to evaluate hydraulic barriers during mine water rebound: A holistic approach

Henning Jasnowski-Peters Till Genth Lisa Rose Sebastian Westermann Christian Melchers

TH Georg Agricola, University of Applied Sciences Forschungszentrum Nachbergbau (Research Center of Post-Mining)

Aim of this research

- evaluate potential loss of containment issue of mine water during mine water rebound
- generate data to forward model mine water rebound fluid pathways (long term >100 yrs)
- build a static geological model and add petrophysical data in order to build a regional hydrogeological model
- scientific support of drilling & SCAL & calibrate borehole geophysical data (wireline logging)
- specific task: test the heterogeneous facies deposition of the Emscher Formation for its hydraulic conductivity

Project "Deep monitoring wells"

- scientific drilling support for drilling deep monitoring wells of the operator RAG AG in order to meter, control and forecast hydraulic potentials in the overburden section during rebound
- Specific goals:
 - evaluate and generate permeability and porosity profiles of the Emscher formation ("Emscher Marls") in order to determine the hydraulic conductivity of the formation in various depositional settings
 - detailed quantitative mineralogy, especially clay minerals, due to self healing potential of fissures and fault zones
 - lithofacial changes from West to East (see Wolansky maps)
 - going from 1D well profiles of permeability to 3D depositional model and petrophysical assessment

Emscher Formation – fact sheet

- Emscher Formation (Middle-Coniacium- Lower Campanium), regionally known as "Emscher Marl" after Schlüter 1874
- Lithology: clayish marlstone quantitiative petrophysical poroperm unknown
- Regional Aquitard in the Munsterland Basin
- Thickness up to 1000m in the basin centre and up to 1500 m at the northern basin border

OttenJann et al. 2022

Geological Survey NRW, 2018

Pre-work

- Wolansky (1964) hydrological characterisitcs of the overburden section
- Changes of groundwater reservoir within the formation – going from fractured aquifer to tight aquitard

Pre work II

Coldewey & Wesche

 (2017) –
 "Hydrogeological
 and petrophysical
 properties of the
 Emscher-Formation"

Coldewey & Wesche 2017

Technische Hochschule

The Workflow

Technische Hochschule Georg Agricola

- Target: Emscher Formation
 facies and depth correlation
- Lab work
 - quantitative clay mineralogy using XRD-Rietveld
 - density and porosimetry
 - air permeametry
- Field data
 - borehole geophysics
 - hydraulic packer tests

Drilling operations

Deep monitoring well sites "Tiefe Pegel"

- Drilling sites
 - Waltrop
 - Lippramsdorf
 - HA-Ost 5
 - at least three more to be determined...

XRD-Rietveld quantification

- Using open-source software program ("Profex")
 - for "bulk"- and decarbonated "random powder"-samples
- Samples as texture slides
 - decarbonated 2 μm fraction
 - measurements: air dry, glycolated, heated up to 550°C

SCAL – special core analysis

- Lithostratigraphy
- Sedimentology
- Marlstone to clayish marlstone, intercalated marly carbonate layers
- Carbonate fraction: chalk-type bioclastics (*Coccolithophorida*)
- framboidal pyrite often present (AMD!)

Pyknometry/ Porosimetry

• Equipment:

- Pyknometer AccuPyc II 1345 (He/N2)
- Hg- Porosimeter Autopore V9600
- Gas-Permeameter
 UltraPerm 610 + Hassler Cell
- Permeabilität measured and calculated using pore throat determination from porosimetry (Katz-Thompson Verfahren)

• Emscher Formation results

- mean pore diameter
 o,o3124 μm
- mean porosity
 14,7439 %

<text><text><text></text></text></text>		the can determine a cancel of the cancel of			Techi Hoch Geory	hische schule g Agrico	
		Gesamtes Poren- volumen	Mittlerer Porendurch- messer [um]	Durchschnitt Porendurch- messer [um]	Gesamt Dichte [g/mL]	Skelett- dichte [g/mL]	Porosität [%]
Micromoritics 2020		[m²/g]			[0/]	18/1	
Will Offerfiles 2020	EM h1	9,951	0,03475	0,02582	2,2900	2,6850	14,7094
	EM h2	10,658	0,02954	0,02326	2,2740	2,6471	14,0959
	EM h3	10,145	0,03322	0,02570	2,2735	2,6690	14,8192
	EM v1	10,581	0,03544	0,02677	2,2369	2,6579	15,8393
	EM v2	12,310	0,02800	0,02128	2,2497	2,6385	14,7360
	EM v3	11,475	0,02646	0,02175	2,2858	2,6660	14,2636
	Sst v1	0,147	28,10055	3,19340	2,0061	2,6233	23,5259
	Sst v2	0,310	26,49321	1,35345	2,0846	2,6680	21,8660
	Sct h1	0 269	27 70771	1 64421	2 0318	2 6207	22 4717

Results – porosimetry & air permeametry

- low permeability ranging from 1 x 10⁻³ mD to 8 x 10⁻³ mD
- porosity: 15-21%

Results – Clay mineralogy & permeability

complete

 mineralogical
 profile including
 detailed clay
 mineralogy for
 the entire cored
 section of the
 Emscher Fm. at
 site Lippramsdorf

Classification of marlstones

- nuclear waste repository related marlstone screening in Germany
- yellow bracket means: "suitable as repository"
- pure marlstones vs. marlstones with intercalated carbonate layers
- Emscher Fm. Is part of a suitable hydraulic conductivity value range for hydraulic barriers

Conclusions

- The workflow applied resulted in quantitative clay mineralogy and poroperm data to be used in hydrogeological modeling and borehole geophysics calibration
- especially the two-way independent permeability assessment delivers a robust QC of the data
- the first continuous depth profile of quantitative plug-based poroperm data for the Emscher Marl has been obtained
- vertical and horizontal hydraulic conductivity of k_f = 6,77×10⁻¹² m/s - 7,4×10⁻¹³ m/s

Thank you for your attention and Glückauf!

Acknowledgments:

We thank RAG AG for permission, sampling and data support, And the "Forum Bergbau und Wasser" is cordially thanked for financing this research.

