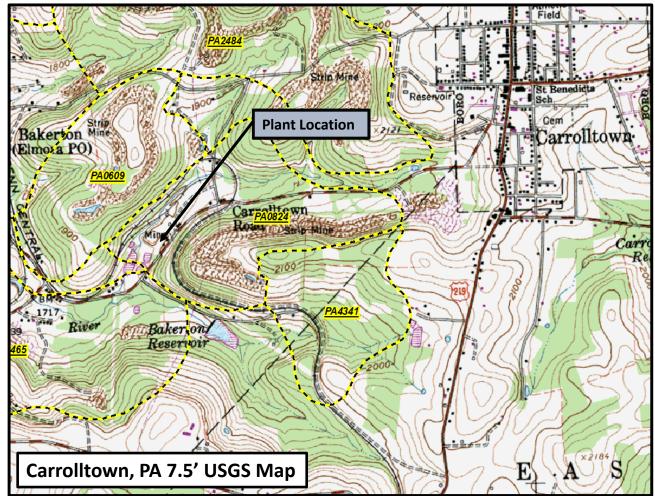

The Barnes & Tucker #20 Mine Drainage Treatment Facility: Optimization Case Study in Consideration of Variable Flow & Water Chemistry

Brad Shultz, P.E., Mining Engineer, OSMRE Rich Beam, P.G., AML & Reg. Program Spec., OSMRE

Dean Baker, P.E., PADEP BAMR (ret.) Roger Rummel, P.E., PADEP BAMR Steve Fisanick III, P.E., PADEP BAMR (ret.)



Office of Surface Mining Reclamation & Enforcement | OSMRE.GOV

Barnes & Tucker #20 Treatment Facility

- Located in West Carroll Township, Cambria County, PA, USA (AML Problem Area, PA 0824)
- Facility constructed by Barnes & Tucker Coal Co. in 1966 in response to amendments to PA Clean Streams Law
- Receiving Stream Sequence:
 - Headwaters of West Branch Susquehanna River

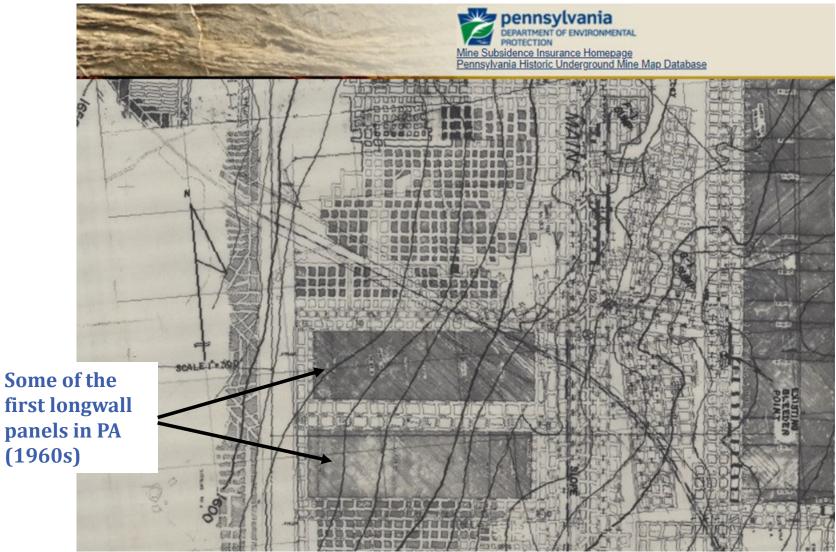
Barnes & Tucker #20 Treatment Facility

- PADEP assumed treatment obligation as part of the Barnes & Tucker Coal Co. Bankruptcy (2001)
- Plant influent quantity and quality varies seasonally; 1.9 L/s (30 gpm) to >19 L/s (>300 gpm); Net acidic to net alkaline

2006 aerial photo showing original lime treatment configuration. Ponds 1&3 completely filled with solids at the time.

B&T #20 Pond 1 Sludge Removal (2014)

Background


- Lower Kittanning (B) seam underground mine originally opened in 1906 by the Logan Coal Co. as its #5 mine.
- The Navy Smokeless Coal Company assumed operations in the 1920's.
- Barnes & Tucker (B&T) acquired the mine in 1955, renaming it the #20 mine and operated until 1985.
- Current treatment site was a drift opening mine access, shop facilities, coal rail loadout, and processing/storage facilities.

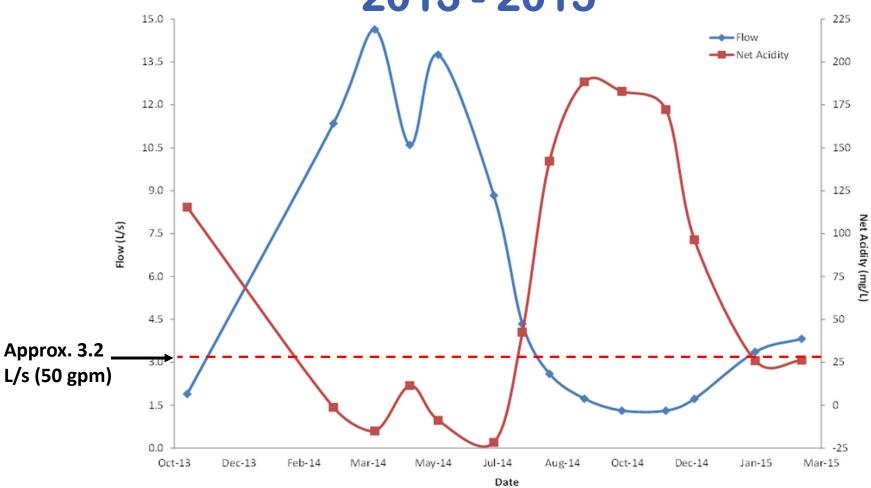
Sept. 1967 Air Photo


B&T #20 Mine Map

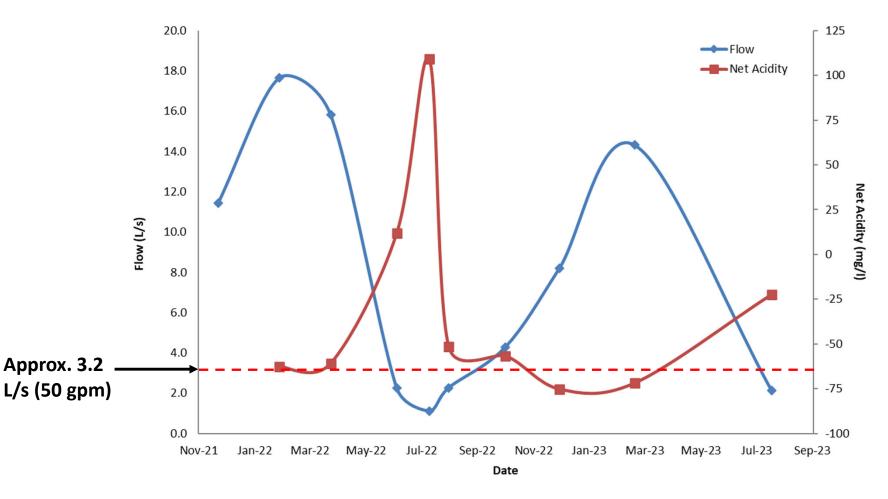
f I

Mine Water Characterization

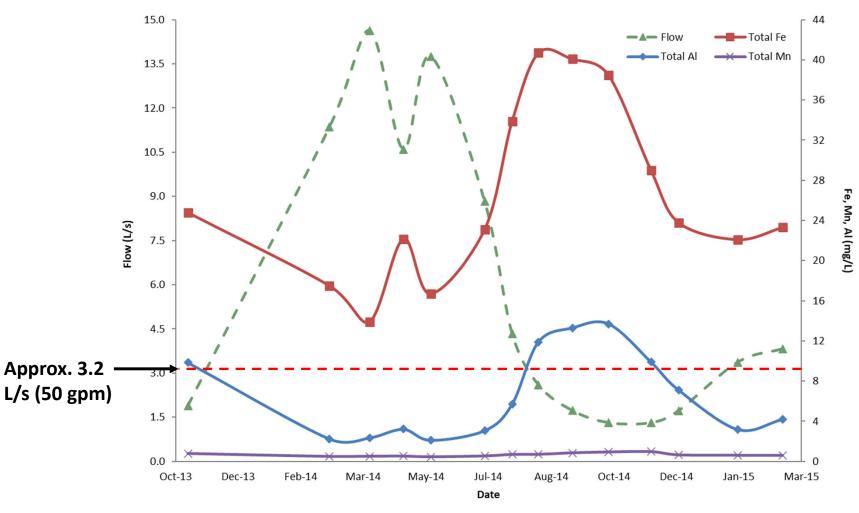
- Local structural geology affects mine water quantity and quality water
- An anticline within the mine workings separates a free-draining portion and a mine pool portion
 - Free-draining portion (northern side) = 60 acres = Net acidic mine water
 - Mine pool portion (southern side) = 400 acres = Net alkaline mine water


Mine Water Characterization (cont.)

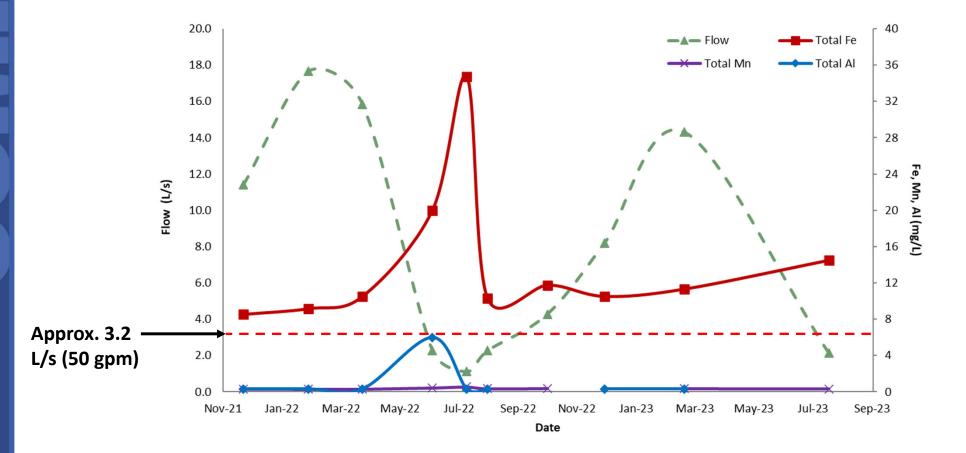
- Post mine closure a mine pool developed that overflows the anticline seasonally and combines with free-draining portion
- During low flow periods, <3.16 L/s (<50 gpm), no mine pool overflow, only freedraining portion discharges at portal
- Raw mine water is net alkaline >6 months/yr with flows ranging: 3.16 L/s (50 gpm) to >18.92 L/s (>300 gpm)
- Mine water contains:
 - Elevated dissolved CO₂ (34 235 mg/L)
 - Elevated dissolved Fe²⁺ (5.0 19.0 mg/L)
 - Low dissolved Al (net acidic only)



Seasonal Variations of Flow Rate & Net Acidity 2013 - 2015



Seasonal Variation of Flow Rate & Net Acidity 2022 - 2023



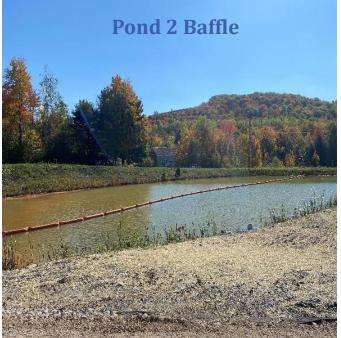
Seasonal Variation of Flow Rate & Total Metals 2013 - 2015

Seasonal Variation of Flow Rate & Total Metals 2022 - 2023

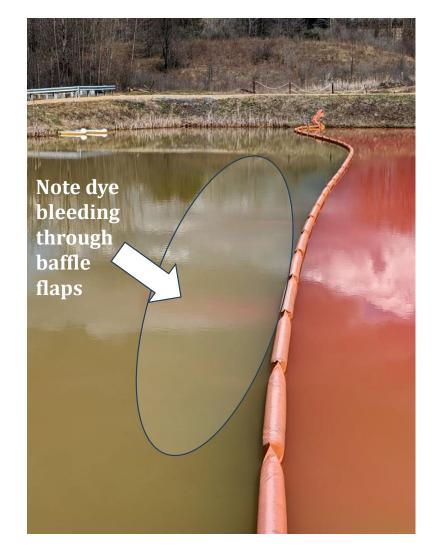
Mine Water Treatment Evolution

- Evolving treatment methods based on varying mine pool water quality & quantity
 - Initially used CaO until 2014
 - Use 25% NaOH to present (added after Pond 1)
- Pond 1 initially received lime treated mine water and filled with iron and both unreacted lime and calcite (85% CCE)
- Ponds 2, 3, & 4 provide further oxidation, settling and storage of iron precipitates
- Sludge periodically injected back into the B&T #20 mine pool behind anticline (recently performed)
- No baffles used, pipes used to set water levels and serve as primary outfalls for each pond
- Due to receiving stream separating Ponds 1 and 2 from Ponds 3 and 4, maintenance of Ponds 3 and 4 was challenging

Recommended Improvements - Completed


- Improve inflow ditch to Pond 1 from mine portal to improve decarbonation
- NaOH addition at Pond 1 outfall
- Conversion from NaOH drip system to a PLC based pHcontrolled pinch valve system
- Replace and modify outfall pipes for each pond and ability to bypass all ponds for maintenance
- Construction of a permanent stream crossing for ease of maintenance at Ponds 3 and 4
- Installation of baffles in Ponds 1 and 2
- Land acquisition for sludge disposal line and borehole
- Improvements provide for successful hybrid passive/active treatment approach based on seasonal water quality changes

Pond 1 Baffle



Improved Raw Water Channel into Pond 1

Dye Tracer Test March 2024: Pond 2

Summary Results of Treatment Optimization (Pond 1)

		CO ₂ Removed			Iron Oxidized		Iron Precipitated		Acidity Reduction		25% NaOH Savings			
Date	Flow (L/s)	mg/l	%	as CaCO ₃ mg/l	mg/l	%	mg/l	%	mg/l	kg/day	L/day	\$ _{@\$0.32/L}		
12/20/2021	11.4	N.M.	N.M.	0	4.84	86%	4.3	50%	8.7	0.54	21.7	\$	6.94	
2/24/2022	17.7	42.9	78%	48.78	5.61	75%	3.8	42%	58.9	5.68	227.1	\$	72.67	
4/20/2022	15.8	12.4	39%	14.10	6.34	79%	5.19	49%	25.5	2.20	88.2	\$	28.21	
6/30/2022	2.3	29.9	74%	34.00	9.87	52%	9.2	46%	51.8	0.65	25.7	\$	8.21	
8/4/2022	1.1	113.2	98%	128.72	21.6	64%	21.9	63%	167.6	1.01	41.1	\$	13.14	
8/25/2022	2.3	12.5	73%	14.21	7.14	85%	8.24	80%	27.1	0.34	13.4	\$	4.30	
10/25/2022	4.3	101.5	91%	115.41	9.97	98%	9.43	80%	133.4	3.13	124.9	\$	39.97	
12/22/2022	8.2	45	39%	51.17	N.M	N.M	7.18	68%	51.2	2.29	91.6	\$	29.32	
3/13/2023	14.3	143	61%	162.60	8.49	90%	6.5	58%	177.9	13.87	556.1	\$	177.95	
8/7/2023	2.1	22.9	65%	26.04	10.96	89%	11.11	77%	45.8	0.52	21.5	\$	6.87	
N.M. = Not Measured		Avg =	69%		Avg =	80%	Avg =	60%			2022 Avg =	\$	27.98	
									Est. Cost Savings Year 2022 = \$ 10,210.97					

Note: Existing conveyance ditch and Pond 1 function as passive treatment components of the existing system. The planned decarbonation/aeration tray system prior to Pond 1 will replace the conveyance ditch for passive treatment of both B&T #20 mine drainage (& Victor #10).

Recommended Additional Improvements

- Further improvements contingent on introduction of Victor #10 abandoned mine discharge
 - Based on loading, Victor #10 & B&T #20 proportion would be a 70/30 split
 - Victor #10 flows: 4.0 31.5 L/s (63 500 gpm)
 - Elevated CO₂ (21 276 mg/L) & dissolved Fe²⁺ (6.3 29 mg/L)
 - Similar water quality seasonal variation
 - Flow <200 gpm = Net acidic & higher dissolved Fe²⁺
 - Flow>200 gpm = Net alkaline & lower dissolved Fe²⁺
- New sludge disposal line and borehole
- Decarbonation/aeration tray system
- Conveyance and hydraulic system
 - Combine Victor #10 and B&T #20
 - Eliminate surface runoff comingling with B&T #20

Decarbonation/Aeration Tray (Example)

PADEP BAMR Wildwood Treatment Facility located in Allegheny Co., PA (USA)

Final Notes & Acknowledgments

- Successful passive/active hybrid treatment approach reduces chemical costs
 - Passive decarbonation/aeration of raw mine water using improved ditch to off-gas dissolved $\rm CO_2$
 - Use of improved raw water channel and Pond 1 for CO₂ off-gassing and the oxidation and settling of Fe²⁺ prior to NaOH addition reduces chemical costs
 - Completed improvements along with future upgrades will allow for co-treatment with Victor #10 mine discharge to improve the W. Branch Susquehanna River headwaters
- Important to characterize any seasonal variations in mine pool quality and quantity to maximize water treatment efficiency
- Innovative and low-cost technologies available for controlling chemical addition
- Thank you to my co-authors, <u>Rich Beam (OSM), Roger Rummel (PADEP BAMR)</u>, <u>Dean Baker (PADEP BAMR – Ret.), & Steve Fisanick III (PADEP BAMR – Ret.)</u>

Brad Shultz, P.E. Mining Engineer bshultz@osmre.gov 717-576-2950

Office of Surface Mining Reclamation & Enforcement | OSMRE.GOV

