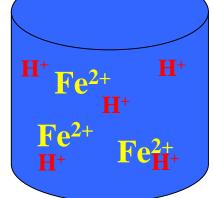

$$Fe^{3+} + 3H_2O = Fe(OH)_3(s) + 3H^+$$
 $pH = -log[H^+]$
Acid


Caustic Soda

NaOH +
$$H^+$$
 = Na^{2+} + H_2O

Base Acid

 * Bases prevent H⁺ from increasing in concentration and causing the pH to drop

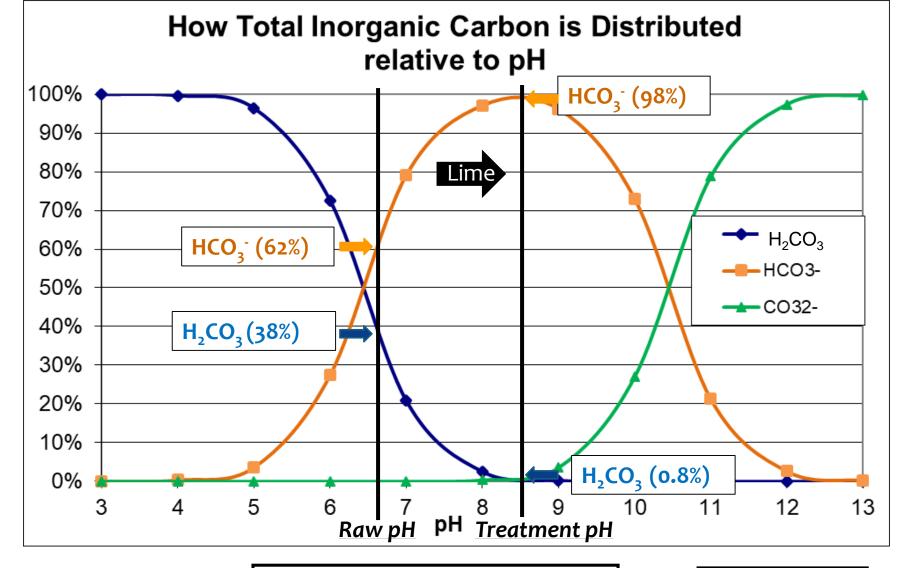
Three CO₂ Species in Water (Total Inorganic Carbon)

$$\mathbf{O}_{2(g)} + \mathbf{H}_2 \mathbf{O} = \mathbf{H}_2 \mathbf{O} + \mathbf{O}_{2(aq)}$$

$$CO_{2(g)} + H_2O = H_2CO_3$$

$$H_2CO_3 = H^+ + HCO_3$$

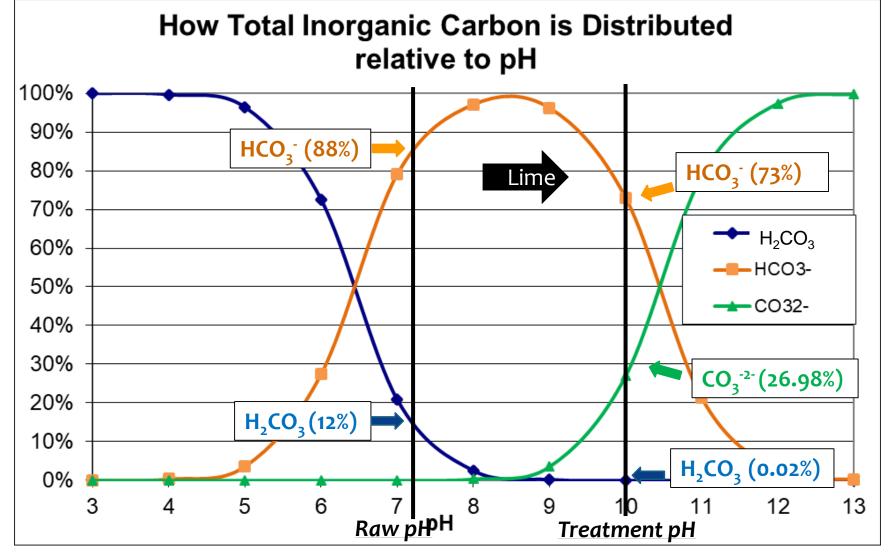
$$HCO_3^- = H^+ + CO_3^{2-}$$


Solid Water (Ice)

Liquid Water (Fluid)

Water Vapor (Gas)

TIC = $H_2CO_{3(aq)} + HCO_3^2 + CO_3^2$ Total Water= Ice + Liquid + Vapor

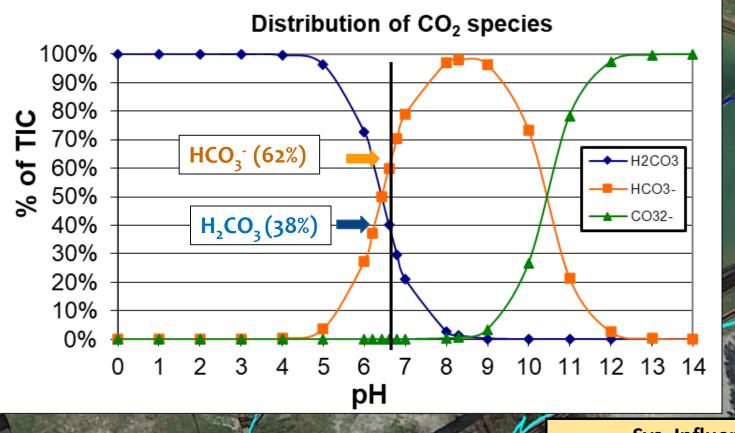

Total Inorganic Carbon (TIC) is a summation of the three ${\rm CO_2}$ species dissolved in water

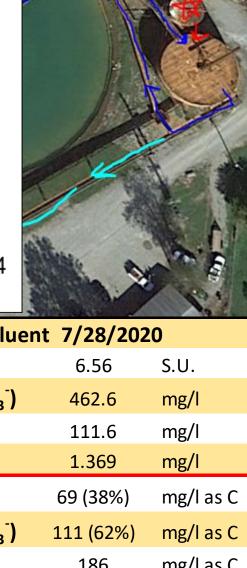
$$\mathbf{H_3^{+}O_3} = \mathbf{H^+ + HCO_3^-}$$

$$2H^{+} + Ca(OH)_{2} = Ca^{2+} + 2H_{2}O +$$

Q: How do we get rid of H,CO,? A: Decarbonation HCO₃ CO₃ HCO₃ CO_{2(g)} + H₂O \ H₂CO₃ HCO₃

$$HO_3^- = H^+ + CO_3^{2-}$$


$$2H^{+} + Ca(OH)_{2} = Ca^{2+} + 2H_{2}O +$$


Enhanced Decarbonation

- * Decarbonation is focused on reducing H₂CO₃ concentration by outgassing CO_{2 (gas)}
- * Enhanced Decarbonation is focused on lowering the concentration of **both** H₂CO₃ and HCO₃
 - * Two Step Process
 - 1. Transform HCO_3^- to $H_2CO_3^-$
 - 2. Decarbonate H₂CO₃

$$CO2(g) + H2O = H2CO3$$
$$H2CO3 = H+ + HCO3$$

$$Fe^{2+} + 2.5H_2O + .25O_2 + = Fe(OH)_3 + 2H^+$$

	Sys. Influent 7/28/2020			
	рН	6.56	S.U.	
	Alkalinity (HCO ₃ -)	462.6	mg/l	
	Fe (D)	111.6	mg/l	
	Mn (D)	1.369	mg/l	
	H ₂ CO _{3(aq)} *	69 (38%)	mg/l as C	
	Alkalinity (HCO ₃ -)	111 (62%)	mg/I as C	
	TIC *	186	mg/I as C	
© 2020 Google	* Calculated Value			

Existing Tank for Enhanced Decarbonation

- 16	Field pH	Dissolved Fe ²⁺	Fe Acidity		HCO ₃		
	s.u.	mg/L as C	mg/L as C	mg/L as C	mg/L as C	mg/L as C	mg/L as C
Raw water w/field alk	6.56	111		69.2	109.3	0.0	178.50

45.36

9.4

59.8

34%

68.4

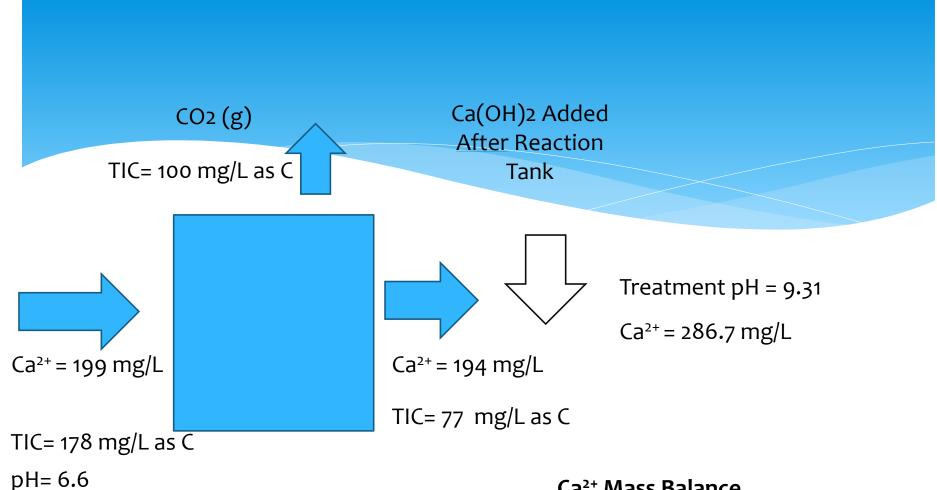
40.9

23%

0.1

0.0

7.22


77.84

100.66

56%

Aerator outfall w/field alk

TIC Lost in aerator

Ca²⁺ Mass Balance

 $286.7 - 194 = 92.2 \text{ mg/L Ca}^{2+} \text{ added}$ 92.2 mg/L $Ca^{2+} = 167 \text{ mg/L } Ca(OH)_2 \text{ Added}$

~2.36 tons/day (50% reduction/annual cost savings of 60K)

Conclusion

Enhanced Decarbonation should be considered for existing and new treatment sites that contain both bicarbonate alkalinity and elevated dissolved iron; * It can be designed to include chemical or natural oxidation of iron * Probably best suited for pH > 6.5 water This process can be easily modeled to evaluate cost and outcome before implementation Feel free to reach out: bmeans@osmre.gov, rbeam@osmre.gov