West Virginia Mine Drainage Task Force Symposium Workshop:

# PHREEQ-N-AMDTreat Model to Evaluate Water-Quality Effects from Passive and Active Treatment of Mine Drainage

Chuck Cravotta, Research Hydrologist, USGS Pennsylvania Water Science Center; <u>cravotta@usgs.gov</u>

Brent Means, Hydrologist, OSMRE Pittsburgh Field Office; <u>bmeans@osmre.gov</u>

Brad Shultz, Mining Engineer, OSMRE Pittsburgh Field Office; <u>bshultz@osmre.gov</u>

Morgantown, WV, October 5, 2022





## "PHREEQ-N-AMDTREAT"

### http://amd.osmre.gov/

SITEMAP



**OSMRE HOME** 

SUPPORT BUGLIST WISHLIST FRQ DOWNLORD TERM PRESS INFO

#### AMDTREAT 5.0.2 PLUS NOW AVAILABLE!

AR HOME

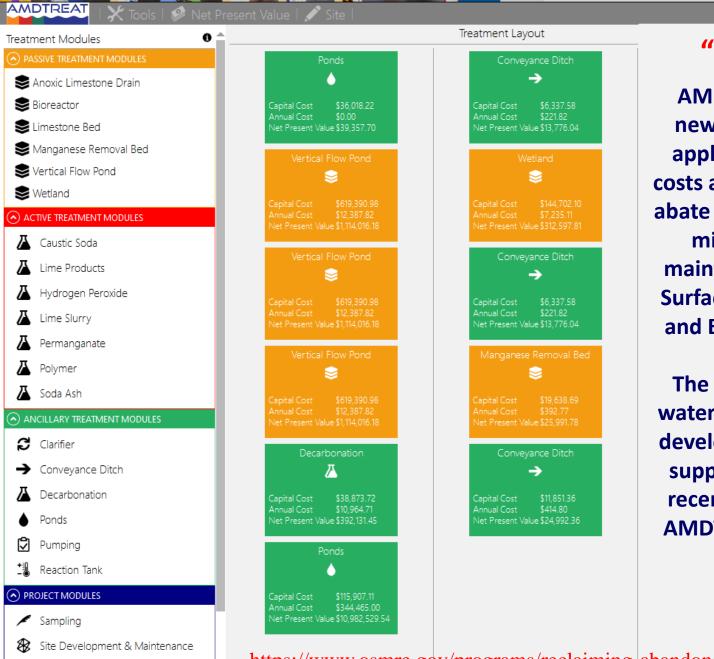
TIPS HOME

AMDTreat 5.0.2 Plus corrects minor convergence issues identified during case study tests performed by the developers.

Enhancements to Version 5 of AMDTreat include incorporation of the geochemical modeling capabilities of the U.S. Geological Survey's (USGS) PHREEQ computer program to model titrations and enhancement to the oxidant tool.

For additional information, please contact Brent Means or Omar Beckford.

DOI HOME


#### WHAT IS AMDTREAT?

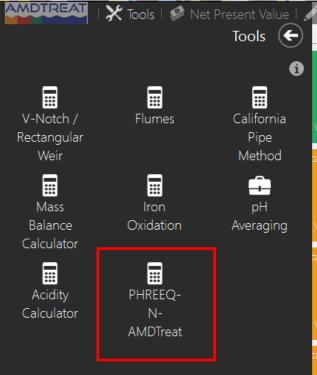
AMDTreat (Pronounced: am'-D-treat or A-M-D-treat.), a member of OSMRE's Technical Innovation and Professional Services (TIPS) suite of software, is a computer application for estimating abatement costs for pollutional mine drainage, commonly referred to as Acid Mine Drainage or AMD. (Also Acid Rock Drainage or ARD.) The current version of AMDTreat is v5.0.2 Plus. AMDTreat can assist a user in estimating costs to abate water pollution using a variety of passive and chemical treatment types; including, vertical flow ponds, anoxic limestone drains, anaerobic wetlands, aerobic wetlands, bio reactors, manganese removal beds, limestone beds, oxic limestone channels, caustic soda, hydrated lime, pebble quicklime, ammonia, oxidation chemicals, and soda ash treatment systems. The acid mine drainage abatement cost model provides over 400 user modifiable variables in modeling costs for treatment facility construction, excavation, revegetation, piping, road construction, land acquisition, system maintenance, labor, water sampling, design, surveying, pumping, sludge removal, chemical consumption, clearing and grubbing, mechanical aeration, and ditching. AMDTreat also contains several financial and scientific tools to help select and plan treatment systems. These tools include a long-term financial forecasting module, an acidity calculator, a sulfate reduction calculator, a Langelier saturation index calculator, a mass balance calculator, a passive treatment alkalinity calculator, an abiotic homogeneous Fe2+ oxidation calculator, a biotic homogeneous Fe2+ oxidation calculator, an oxidation tool, and a metric conversion tool.

AMDTreat is a computer application for estimating abatement costs for AMD (acidic or alkaline mine drainage).

#### AMDTreat is maintained by OSMRE.

The *obsolete* version of AMDTreat 5.0+ has been recoded from FoxPro to C++ to facilitate its use on computer systems running Windows 10. *One of three* PHREEQC geochemical models described below has been incorporated to run with the recoded AMDTreat 6.0 program.

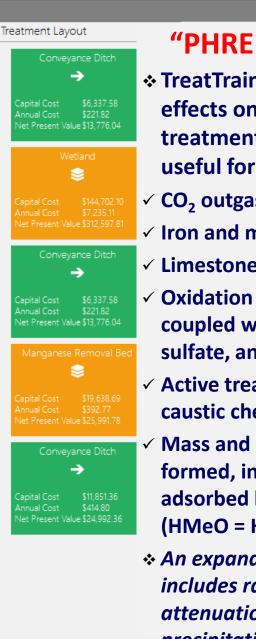



Labor

### "AMDTreat 6.0"

AMDTreat 6.0 (2022) is a newly updated computer application for estimating costs and sizing of facilities to abate AMD (acidic or alkaline mine drainage) that is maintained by the Office of Surface Mining Reclamation and Enforcement (OSMRE).

The PHREEQ-N-AMDTreat water-quality modeling tool, developed by the USGS with support from OSMRE, was recently incorporated with AMDTreat 6.0 (beta version shown here).


https://www.osmre.gov/programs/reclaiming-abandoned-mine-lands/amdtreat



Cravotta, C.A. III, 2020. Interactive PHREEQ-N-AMDTreat water-quality modeling tools to evaluate performance and design of treatment systems for acid mine drainage (software download): U.S. Geological Survey Software Release. https://doi.org/10.5066/P9QEE3D5

Cravotta, C.A. III, 2021. Interactive PHREEQ-N-AMDTreat water-quality modeling tools to evaluate performance and design of treatment systems for acid mine drainage: Applied Geochemistry, 126, 10845. https://doi.org/10.1016/j.apgeochem.2020.10 4845

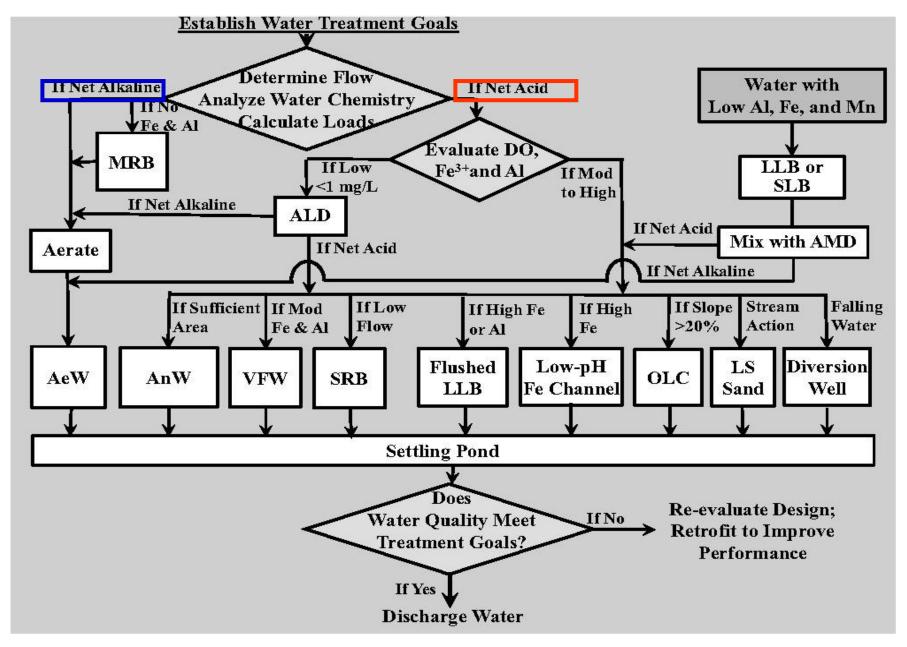




### "PHREEQ-N-AMDTreat"

- TreatTrainMix2 model simulates effects on water quality by treatment system components; useful for costs/benefits analysis.
- $\checkmark$  CO<sub>2</sub> outgassing and O<sub>2</sub> ingassing;
- Iron and manganese oxidation;
- Limestone dissolution;
- Oxidation of organic carbon coupled with reduction of Fe<sup>III</sup>, sulfate, and nitrate.
- Active treatment with H<sub>2</sub>O<sub>2</sub> and/or caustic chemicals.
- Mass and composition of solids formed, including Fe, Mn, and Al adsorbed by hydrous metal oxides (HMeO = HFO + HMO + HAO).
- An expanded stand-alone model includes rare-earth elements attenuation by adsorption and precipitation.




Increase pH/oxidation with aeration, natural substrates & microbes

**Reactions slow** 

Large area footprint

Low maintenance

Increase pH/oxidation with aeration &/or industrial chemicals Reactions fast, efficient Moderate area footprint High maintenance



Skousen, J.G., Zipper, C.E., Rose, A.W., Ziemkiewicz, P.F., Nairn, R., McDonald, L.M., and Kleinmann, R.L., 2017. Review of passive systems for acid mine drainage treatment. Mine Water Environ. 36, 133-153.

## **PHREEQ-N-AMDTreat Models**

Simulate water-quality changes during passive and active treatment.

Three complementary, user-friendly tools use same thermodynamic database and input water-quality data for a given AMD:

"CausticTitration.exe"

- ✓ "ParallelTreatment.exe"
- $\checkmark$  "TreatTrainMix2.exe" ( $\rightarrow$  incorporated with AMDTreat 6.0)

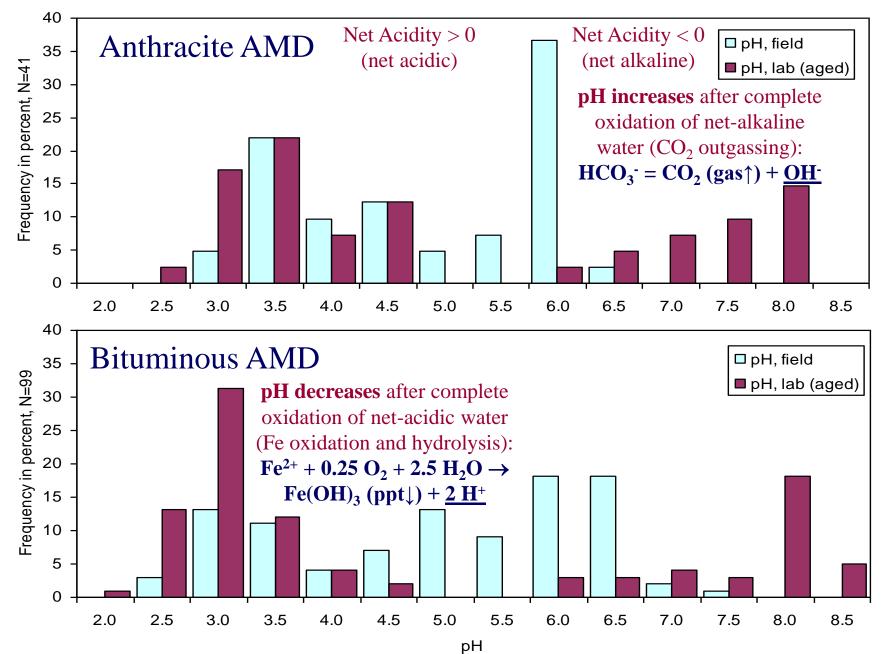
Graphical and tabular output indicates changes in pH, concentrations of metals, TDS, and SC plus the cumulative quantity of precipitated solids as a function of retention time or the amount of caustic added.

Evaluate design/performance and costs/benefits of alternatives.

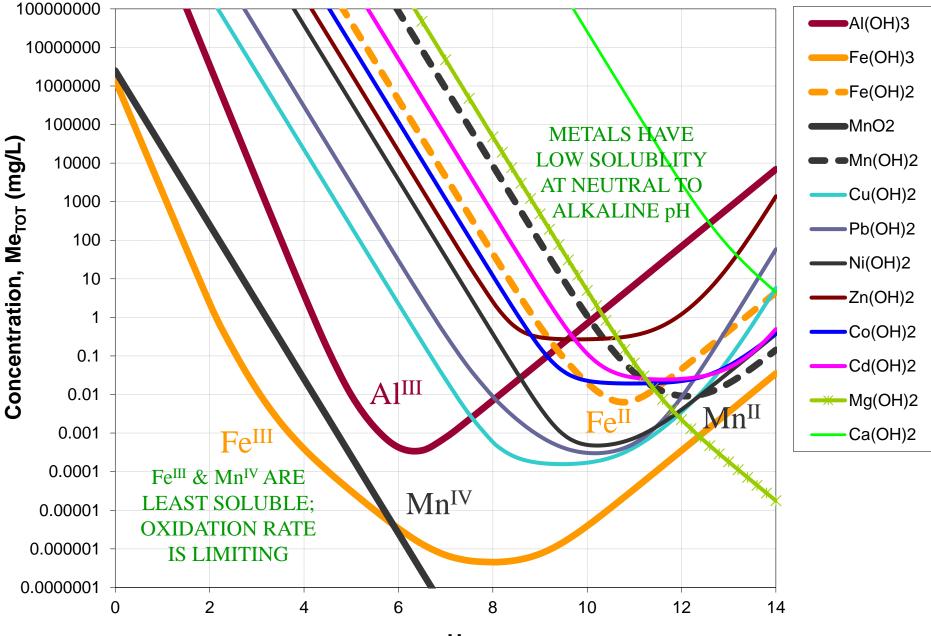
### PHREEQ-N-AMDTreat: Modeled Variables

|                                                                                                           | Variable on User        | _                                                                   |
|-----------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------|
| Variable description                                                                                      | Interface               |                                                                     |
| Solutions A and B*                                                                                        |                         | <ul> <li>Input water-quality, one or two solutions (A+B)</li> </ul> |
| Design flow                                                                                               | Design flow (gpm)*      |                                                                     |
| Mix fraction                                                                                              | Mix Fraction            | _                                                                   |
| Water temperature                                                                                         | Temp (C )               |                                                                     |
| Specific conductance at 25C                                                                               | SC (uS/cm)              |                                                                     |
| Dissolved oxygen                                                                                          | DO (mg/L)               |                                                                     |
| рН                                                                                                        | рН                      |                                                                     |
| Acidity                                                                                                   | Acidity (mg/L)          |                                                                     |
| Net acidity, calculated                                                                                   | Estimate NetAcidity     |                                                                     |
| Alkalinity                                                                                                | Alk (mg/L)              |                                                                     |
| Total inorganic carbon                                                                                    | TIC (mg/Las C)          |                                                                     |
| Total inorganic carbon, calculated                                                                        | Estimate TIC            |                                                                     |
| Total iron                                                                                                | Fe (mg/L)               |                                                                     |
| Ferrous iron                                                                                              | Fe2 (mg/L)              |                                                                     |
| Ferrous iron, calculated                                                                                  | Estimate Fe2            |                                                                     |
| Aluminum                                                                                                  | Al (mg/L)               |                                                                     |
| Manganese                                                                                                 | Mn (mg/L)               |                                                                     |
| Sulfate                                                                                                   | SO4 (mg/L)              |                                                                     |
| Chloride                                                                                                  | Cl (mg/L)               |                                                                     |
| Calcium                                                                                                   | Ca (mg/L)               |                                                                     |
| Magnesium                                                                                                 | Mg (mg/L)               |                                                                     |
| Sodium                                                                                                    | Na (mg/L)               | -                                                                   |
| Potassium                                                                                                 | K (mg/L)                |                                                                     |
| Silicon                                                                                                   | Sî (mg/L)               |                                                                     |
| Nitrate                                                                                                   | NO3N (mg/L)             |                                                                     |
| Total dissolved solids                                                                                    | TDS (mg/L)              |                                                                     |
| Dissolved organic carbon                                                                                  | DOC (mg/L as C)         |                                                                     |
| Humate                                                                                                    | Humate (mg/L as C)      |                                                                     |
| Hydrogen peroxide, calculated (after conservative mixing of A and B)                                      | Estimate H2O2.mol/L     | _                                                                   |
| Kinetic adjustment factor (multiplied by rate constant) applied equally to all steps of ParallelTreatment | or TreatTrainMix2 tools | Adjustment factors for rate constants                               |
| Factor kCO2, multiplied by CO2 outgassing rate constant (kLaCO2)                                          | factr.kCO2              | -                                                                   |
| Factor kO2, multiplied by CO2 outgassing rate constant to estimate O2 ingassing rate constant             | factr.kO2               |                                                                     |
| Factor kFeHOM, multiplied by homogeneous Fe2 oxidation rate constant                                      | factr.kFeHOM            |                                                                     |
| Factor kFeHET, multiplied by heterogeneous Fe2 oxidation rate constant                                    | factr.kFeHET            |                                                                     |
| Factor kFellMnOx, multiplied by heterogeneous Fe2 oxidation rate constant                                 | factr.kFellMnOx         |                                                                     |
| Factor kbact, multiplied by microbial rate constant (assumes Fe oxidizing bacteria MPN = 5.3e11 cells/    | /L) factr.kbact         |                                                                     |
| Factor kFeNO3, multiplied by homogeneous Fe2 oxidation rate constant                                      | factr.kFeNO3            |                                                                     |
| Factor kMnHOM, multiplied by homogeneous Mn2 oxidation rate constant                                      | factr.kMnHOM            |                                                                     |
| Factor kMnHFO, multiplied by heterogeneous Mn2_HFO oxidation rate constant                                | factr.kMnHFO            |                                                                     |
| Factor kMnHMO, multiplied by heterogeneous Mn2_HMO oxidation rate constant                                | factr.kMnHMO            |                                                                     |
| Factor kSHFO, multiplied by Felll reduction-sulfide oxidation rate constant                               | factr.kSHFO             |                                                                     |
| Factor kSOC, multiplied by sedimentary organic carbon oxidation rate constant                             | factr.kSOC              |                                                                     |
| Factor kDOC, multiplied by dissolved organic carbon oxidation rate constant                               | factr.kDOC              |                                                                     |
| Factor kH2O2, peroxide Fe2 oxidation rate constant                                                        | factr.kFeH2O2           |                                                                     |
| Exponential factor for calcite dissolution rate model                                                     | EXPcc                   |                                                                     |

### PHREEQ-N-AMDTreat: Modeled Variables

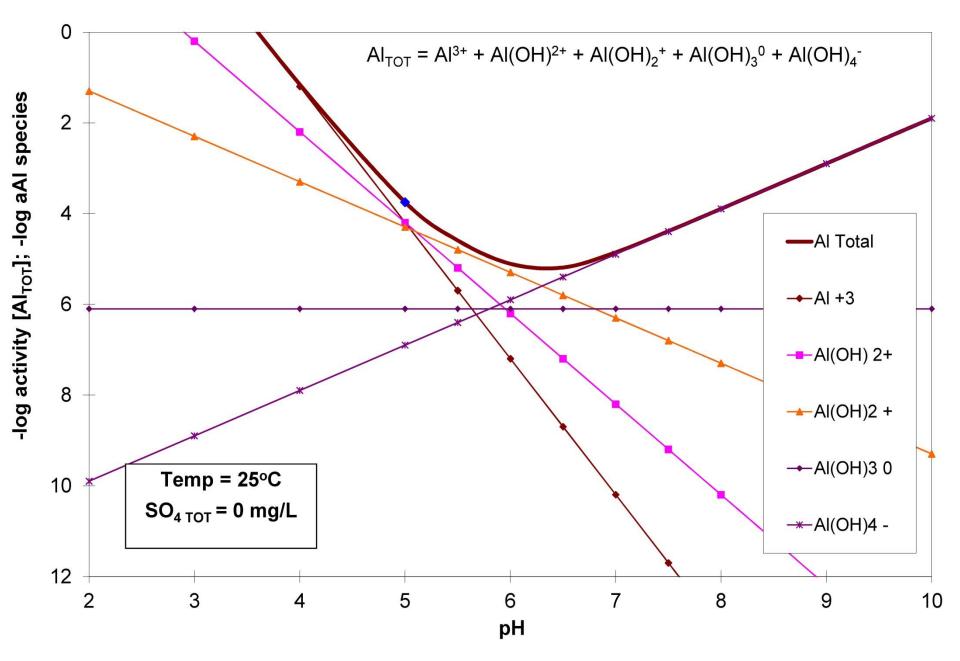

| Variable description                                                                                         | Variable on User<br>Interface | _                                             |
|--------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------|
| Kinetic adjustment and equilibrium variables used in CausticTitration tool                                   |                               | Variables applied in CausticTitration tool    |
| Time, in seconds, for pre-aeration step                                                                      | Time0                         |                                               |
| kCO2, CO2 mass-transfer rate for pre-aeration step; see Table S6                                             | kLaCO2.1/s                    |                                               |
| Steady-state log PCO2, used with kCO2 in CO2 mass-transfer rate expression                                   | Steady-state logPCO2          |                                               |
| Concentration of caustic soda (NaOH) solution in weight percent                                              | NaOH wt%soln                  |                                               |
| Equilibrium value (solid-phase precipitation limit) for all steps in CausticTitration, ParallelTreatment, or | r TreatTrainMix2 tools        | Solid-phase precipitation control             |
| Saturation index for calcite precipitation as equilibrium phase                                              | SI_CaCO3                      |                                               |
| Saturation index for siderite precipitation as equilibrium phase                                             | SI_FeCO3                      |                                               |
| Saturation index for Fe(OH)3 precipitation as equilibrium phase; see Table S2                                | SI_Fe(OH)3                    |                                               |
| Saturation index for schwertmannite precipitation as equilibrium phase; see Table S2                         | SI_Schwertmannite             |                                               |
| Saturation index for Al(OH)3 precipitation as equilibrium phase; see Table S2                                | SI_AI(OH)3                    |                                               |
| Saturation index for basaluminite precipitation as equilibrium phase; see Table S2                           | SI_Basaluminite               |                                               |
| Kinetic adjustment factor applied differently to each step of ParallelTreatment or TreatTrainMix2 tools      | s, i = (1:11)                 | System variables for up to 11 treatment steps |
| Target pH specified for caustic addition at steps 1-5                                                        | >pH                           | system variables for up to 11 treatment steps |
| Hours total for step (1:11)                                                                                  | Time.hrs                      |                                               |
| Water temperature at end of step (1:11)                                                                      | Temp2.C                       |                                               |
| Hydrogen peroxide at beginning of step (1:11)                                                                | H2O2.mol                      |                                               |
| kCO2, CO2 mass-transfer rate at beginning of step (1:11); see Table S6                                       | kLaCO2.1/s                    |                                               |
| Steady-state log PCO2, used with kCO2 in CO2 mass-transfer rate expression for each step (1:11)              | Lg(PCO2.atm)                  |                                               |
| Calcite unit surface area at beginning of step (1:11); see Table S7                                          | SAcc.cm2/mol                  |                                               |
| Calcite mass fraction in limestone at beginning of step (1:11)                                               | M/M0cc                        |                                               |
| Sedimentary organic carbon mass at beginning of step (1:11)                                                  | SOC.mol                       |                                               |
| Sorbent mass at beginning of step (1:11)                                                                     | HMeO.mg                       |                                               |
| Sorbent content as percent iron at beginning of step (1:11)                                                  | Fe%                           |                                               |
| Sorbent content as percent manganese at beginning of step (1:11)                                             | Mn%                           |                                               |
| Sorbent content as percent aluminum at beginning of step (1:11)                                              | Al%                           |                                               |
| Description of step (1:11)                                                                                   | Description                   |                                               |

\*Input values for two different solutions, A and B, may be entered. Suffix "B" applies to variable names for solution B.

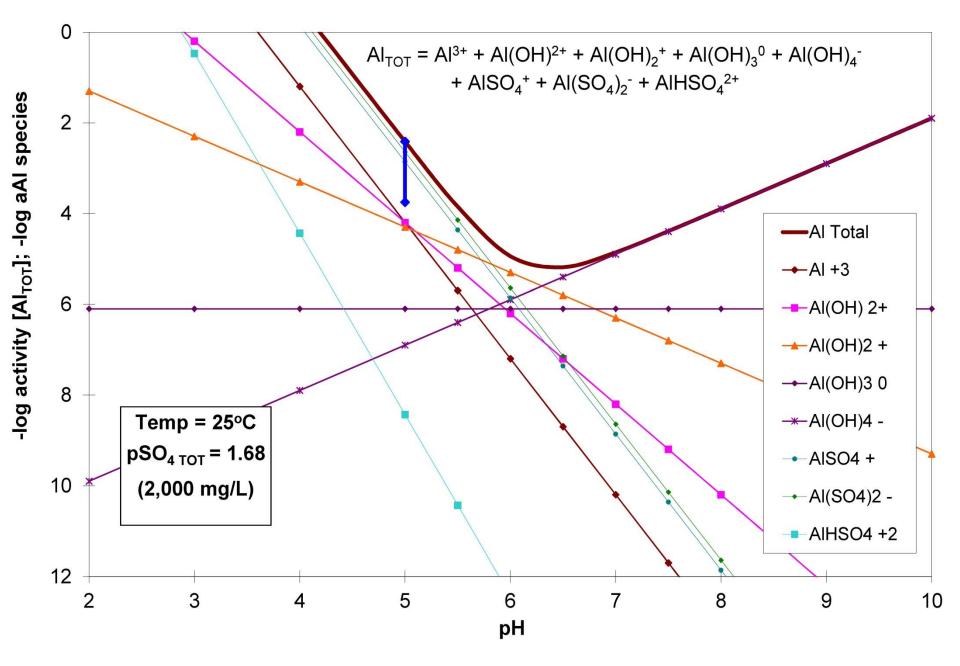

## pH, Oxidation State, and Speciation Affect Attenuation of Metals



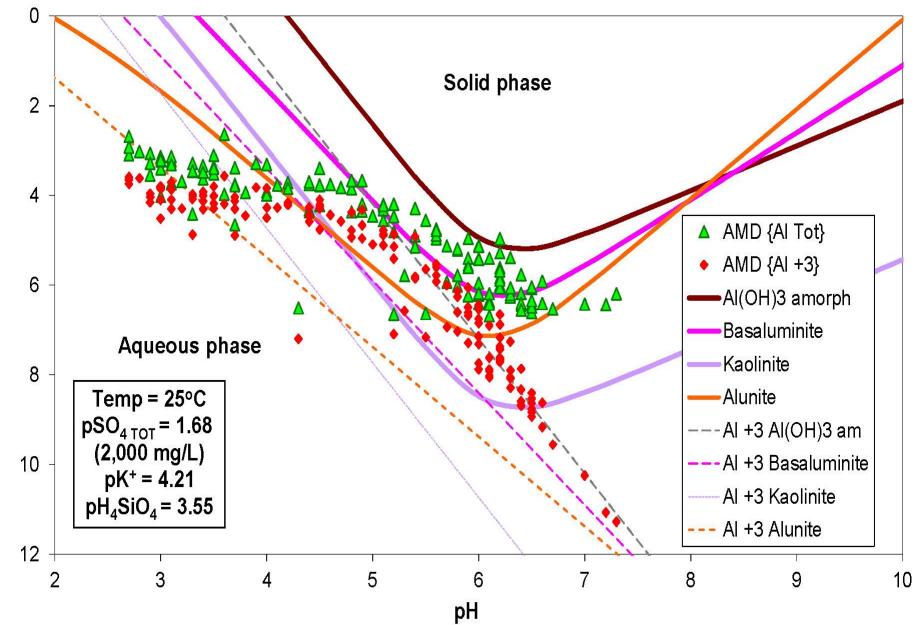
Bimodal pH, Net Acidic, and Net Alkaline AMD



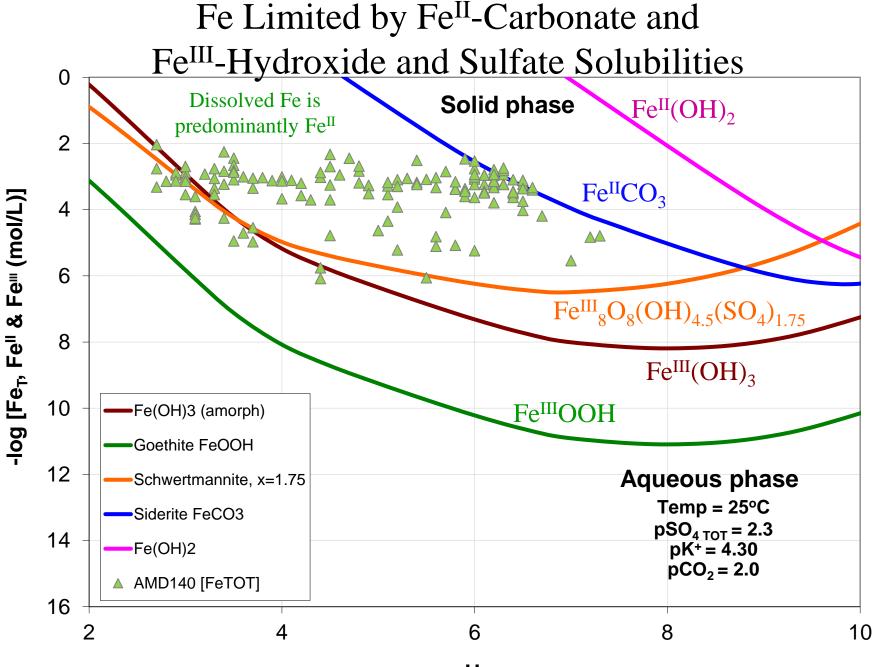

### Solubilities of Metal Hydroxides




pН


### Al Solubility




### Al Solubility Considering Aqueous Sulfate Species



### Al Solubility Considering Aqueous Sulfate Species



-log activity Al<sub>τoτ</sub> or Al<sup>+3</sup>



рΗ

Iron Oxidation Kinetics are pH Dependent (pH is affected by gas exchange, hydrolysis, neutralization; abiotic and microbial processes can be involved)

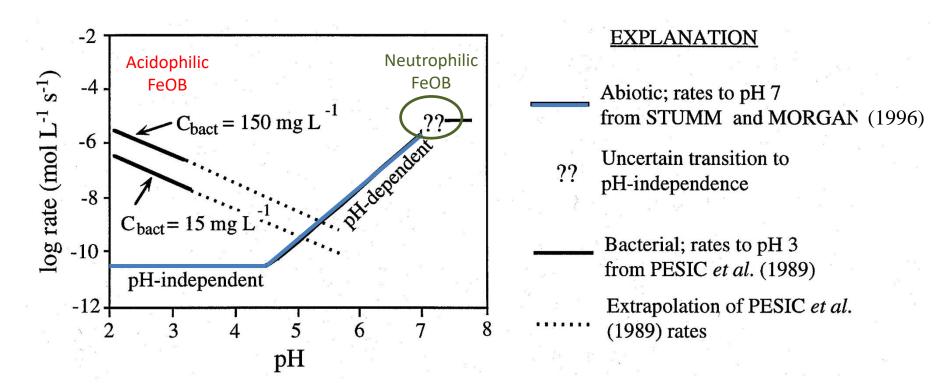



Fig. 3. Rate of Fe(II) oxidation versus pH based on abiotic and biological rate laws (Kirby et al., 1999)

\*\* C<sub>bact</sub> is concentration of iron-oxidizing bacteria (FeOB), in mg/L, as dry weight of bacteria (2.8E-13 g/cell or 2.8E-10 mg/cell).

The AMDTreat FeII oxidation kinetic model uses most probable number of iron-oxidizing bacteria per liter (MPNbact).

 $C_{bact}$  = 150 mg/L is equivalent to MPNbact = 5.3E11, where Cbact = MPNbact ·(2.8E-10).

Neutrophilic rate is adjusted for optimum conditions of pH (6.5-7.5) and low DO (1.9-2.2 mg/L) (Eggerichs et al., 2014). Additionally, catalysis by adsorption to solids (heterogeneous oxidation) depends on pH (>5).

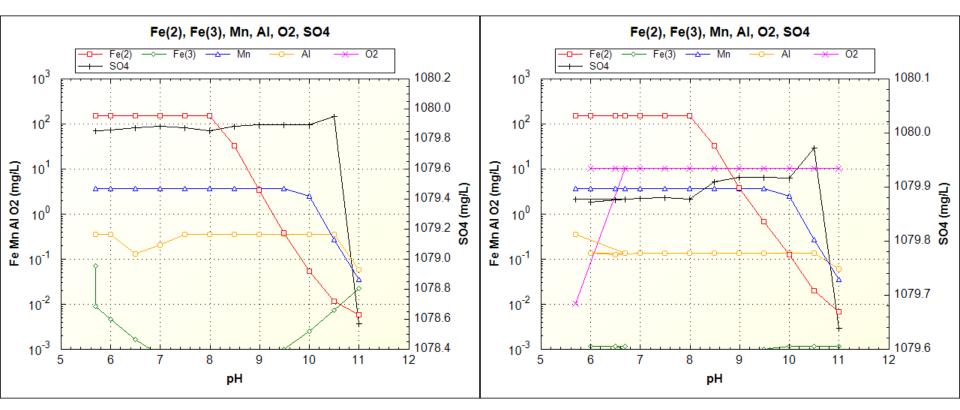
## **PHREEQ-N-AMDTreat Examples** Gas Exchange, pH, and Metals Attenuation



### Caustic Titration with Pre-Aeration (Decarbonation) St. Michael: pre-aeration decreases CO<sub>2</sub> acidity, caustic usage, and sludge File Select folder for input/output water-quality

| Select Workspace                      | C:\Users\cravott | a\Documents\AMDTreat_geochem_c | lata\StMichael                             |                           |                                            |                                             |                          |
|---------------------------------------|------------------|--------------------------------|--------------------------------------------|---------------------------|--------------------------------------------|---------------------------------------------|--------------------------|
| One or two                            | Soln#A           | Soln#B                         |                                            |                           |                                            | Options: r                                  | no aeration,             |
| initial solution<br>Design flow (gpm) | S: 5200          | 0                              | Caustic Chemical Treatment Type            |                           |                                            | •                                           | ·                        |
| Mix fraction                          | 1                | 0 Only Soln#A                  | O Hydrated Lime, Ca(OH)2                   |                           |                                            | kinetic pr                                  | e-aeration               |
| Temp (C)                              | 15.4             | 0.01                           | Pebble Quick Lime, CaO                     |                           |                                            | $(w/wo H_2C)$                               | $)_{a}$ ) and            |
|                                       |                  |                                | Caustic Soda, NaOH 2                       | 20 v wt% soln             |                                            | ` <u> </u>                                  | <u> </u>                 |
| SC (uS/cm)                            | 1923             | 0                              | Soda Ash, Na2CO3                           |                           |                                            | equilibriun                                 | n aeration.              |
| DO (mg/L)                             | 0.01             | 0.01 DO must be > 0            |                                            |                           |                                            |                                             |                          |
| pН                                    | 5.7              | 0                              | Not Aerated     Instant                    | aneous equilibratio       |                                            |                                             |                          |
| Acidity (mg/L)                        | 254.2            | 0                              | Pre-Aerated Time Secs                      | 54 Duratio                | on of pre-aeration in                      | sec                                         |                          |
| Estimate NetAcid                      | dity 223         | 0                              | kLaCO2.1/s                                 | 0.05 v CO <sub>2</sub> ou | tgassing rate constar                      | nt in sec <sup>-1</sup>                     |                          |
| Alk (mg/L)                            | 50.8             | 0                              | factr.kCO2                                 | 1 Adjusti                 | ment CO <sub>2</sub> outgassing            | rate (x kLaCO2)                             |                          |
| TIC (mg/L as C)                       | 57.3             | 0                              | factr.kO2                                  | 2.1 Adjustr               | ment O <sub>2</sub> ingassing rat          | te (x kLaCO2)                               |                          |
| Estimate TIC                          | 63.5             | 0                              | H2O2.mol (                                 | 0 Hydrog                  | gen peroxide added*                        |                                             |                          |
| Fe (mg/L)                             | 148              | 0                              | Estimate H2O2.mol/L                        | 0.001332 *multij          | ply Fe2.mg by 0.0000                       | 009 to get [H <sub>2</sub> O <sub>2</sub> ] |                          |
| Fe2 (mg/L)                            | 148              | 0                              | 0.0001143 35wt% 0.0001                     | 082 50wt%                 |                                            | Allows sele                                 | ection and               |
| Estimate Fe2                          | 0                | 0                              | H2O2 wt% units gal/gal (mem                | no, not used)             |                                            |                                             |                          |
| AI (mg/L)                             | 0.34             | 0                              | factr.kFeH2O2                              | 1 Adjust                  | ment to H <sub>2</sub> O <sub>2</sub> rate | evaluation                                  | of key variables         |
| Mn (mg/L)                             | 3.6              | 0                              | O Aerated to Equilibrium Equilib           | ration with specifie      | ed log(Pco <sub>2</sub> , atm)             | that affect                                 | chemical usage           |
| SO4 (mg/L)                            | 1078             | 0                              | User Specified "Steady-State               | " Conditions:             |                                            | efficiency.                                 | Ŭ                        |
| CI (mg/L)                             | 32.8             | 0                              |                                            | -3.4 ~                    |                                            | chickency.                                  |                          |
| Ca (mg/L)                             | 242              | 0                              | Steady-state logPCO2                       | S                         | elected mineral                            |                                             |                          |
| Mg (mg/L)                             | 88.7             | 0                              | Saturation Index Ig(IAP/K) to Preci        | pitate Selected Solids: p | precipitation points                       | Cravotta, C.A                               | . III, 2021. Interactive |
| Na (mg/L)                             | 27.8             | 0 Al                           | (OH)3 0.0 V E                              | Basaluminite 3.0          | ~                                          | PHREEQ-N-                                   | AMDTreat water-          |
| K (mg/L)                              | 9.15             | Fe                             | e(OH)3 0.0 ~ s                             | Schwertmannite 1.0        | ~                                          | 1 V                                         | ing tools to evaluate    |
| Si (mg/L)                             | 18.8             | Ca                             | aCO3 0.3 V F                               | FeCO3 or MnCO3 2.5        | ~                                          | 1                                           | and design of treatment  |
| NO3N (mg/L)                           | 0                | 0                              | Consulta Theritan O taut                   |                           | onal report of output                      | <i></i>                                     | cid mine drainage:       |
| TDS (mg/L)                            | 0                |                                | Generate Titration Output                  |                           | IREEQC Output Report                       | * *                                         | chemistry, 126, 10845.   |
|                                       |                  |                                |                                            | Plot Sat Index            | Plot PPT Solids                            | 1 0                                         | g/10.1016/j.apgeochem.   |
| DOC (mg/L as C)                       | 0.1              | · · ·                          | nal on-screen graphical display            | s of selected outpu       | It                                         | 2020.104845                                 |                          |
| Humate (mg/L as C)                    | 0.1              | 0 Caustic Titration            | n.exe created by C.A. Cravotta III, U.S. G | eological Survey. Version | n 1.4.5, August 2021                       |                                             |                          |

### Caustic Titration with Pre-Aeration (Decarbonation) St. Michael: pre-aeration decreases $CO_2$ acidity, caustic usage, and sludge


A. CausticTitration.exe: Not aerated (CaO reacted to achieve pH 8.5 is 675 mg/L as CaCO<sub>3</sub>) Caustic

| A. Causti | childhon.exe.        | NUL aclateu  | (Cao reacted             | to achieve pri | 0.5 IS <b>075</b> Illg | /Las Caco <sub>3</sub> / |                      |                           |            |           |
|-----------|----------------------|--------------|--------------------------|----------------|------------------------|--------------------------|----------------------|---------------------------|------------|-----------|
| pН        | Caustic<br>asCaCO3mg | Fe_mg        | Fe2_mg                   | Al_mg          | Mn_mg                  | TDS_mg                   | NetAcidity_mg        | SolidsPPT_mg              | CO2_mg     | O2_mg     |
| 5.699391  | 0.000000             | 148.253946   | 148.184017               | 0.340583       | 3.606177               | 1,844.993285             | 219.160655           | 0.000000                  | 184.696702 | 0.000000  |
| 5.698863  | 0.000000             | 148.192824   | 148.184017               | 0.340589       | 3.606188               | 1,844.843522             | 219.051235           | 0.116997                  | 184.743198 | 0.000000  |
| 6.000000  | 36.694286            | 148.189513   | 148.184989               | 0.340591       | 3.606212               | 1,881.558706             | 182.288486           | 0.125192                  | 152.974763 | 0.000000  |
| 6.500000  | 112.570987           | 148.188619   | 148.186989               | 0.125352       | 3.606260               | 1,956.151328             | 106.359043           | 0.753005                  | 87.623936  | 0.000000  |
| 7.000000  | 171.880310           | 148.189212   | 148.188493               | 0.204352       | 3.606297               | 2,016.003903             | 47.027779            | 0.526362                  | 37.108986  | 0.000000  |
| 7.500000  | 304.913856           | 148.187159   | 148.186724               | 0.340595       | 3.606254               | 1,955.324734             | 108.502893           | 194.644240                | 8.208932   | 0.000000  |
| 8.000000  | 420.943189           | 148.184464   | 148.184105               | 0.340589       | 3.606190               | 1,859.127523             | 204.623649           | 406.792768                | 0.939037   | 0.000000  |
| 8.500000  | 674.529768           | 31.972639    | 31.972263                | 0.340599       | 3.606297               | 1,671.810545             | 44.644131            | 687.418049                | 0.074199   | 0.000000  |
| 9.000000  | 737.552245           | 3.319670     | 3.319157                 | 0.340602       | 3.606323               | 1,629.448665             | 1.378623             | 753.285879                | 0.007021   | 0.000000  |
| 9.500000  | 752.060641           | 0.379644     | 0.378671                 | 0.340601       | 3.606321               | 1,629.762183             | -7.720410            | 763.426508                | 0.000694   | 0.000000  |
| 10.000000 | 767.704290           | 0.055916     | 0.053479                 | 0.340601       | 2.441687               | 1,639.455711             | -21.535525           | 767.660752                | 0.000068   | 0.000000  |
| 10.500000 | 1,067.563230         | 0.018483     | 0.011410                 | 0.340618       | 0.266277               | 1,695.835449             | -39.623063           | 935.930409                | 0.000005   | 0.000000  |
| 11.000000 | 1,171.884112         | 0.027497     | 0.005748                 | 0.055888       | 0.034796               | 1,729.690739             | -65.761207           | 987.130878                | 0.000000   | 0.000000  |
| B. Causti | cTitration.exe:      | Pre-aerated, | CO <sub>2</sub> decrease | d almost 90%   | (CaO reacted           | to achieve pH            | 8.5 is <b>290</b> mg | /L as CaCO <sub>3</sub> ) | _          |           |
| pН        | Caustic<br>asCaCO3mg | Fe_mg        | Fe2_mg                   | Al_mg          | Mn_mg                  | TDS_mg                   | NetAcidity_mg        | SolidsPPT_mg              | CO2_mg     | O2_mg     |
| 5.700000  | 0.000000             | 148.253944   | 148.253944               | 0.340583       | 3.606177               | 1,796.954955             | 218.906769           | 0.000000                  | 184.683994 | 0.010018  |
| 6.697709  | 0.000000             | 148.153294   | 148.152157               | 0.131429       | 3.606182               | 1,795.523678             | 218.803412           | 0.797321                  | 17.796470  | 10.215814 |
| 6.000000  | -28.616060           | 148.152569   | 148.151421               | 0.131434       | 3.606169               | 1,766.883972             | 247.467641           | 0.000009                  | 42.257085  | 10.215762 |
| 6.500000  | -7.568373            | 148.153121   | 148.151973               | 0.122499       | 3.606183               | 1,787.899450             | 226.379052           | 0.025841                  | 24.223205  | 10.215800 |
| 7.000000  | 9.055535             | 148.153108   | 148.152391               | 0.131435       | 3.606193               | 1,804.585382             | 209.741323           | 0.000836                  | 10.263163  | 10.215829 |
| 7.500000  | 18.349692            | 148.152996   | 148.152562               | 0.131435       | 3.606197               | 1,813.885563             | 200.442332           | 0.001376                  | 3.580427   | 10.215841 |
| 8.000000  | 35.672893            | 148.152651   | 148.152292               | 0.131435       | 3.606191               | 1,810.601897             | 203.719540           | 20.603783                 | 0.958068   | 10.215822 |
| 8.500000  | 289.472888           | 32.288226    | 32.287850                | 0.131439       | 3.606297               | 1,660.197303             | 45.284262            | 302.427612                | 0.075796   | 10.216122 |
| 9.000000  | 352.483745           | 3.743785     | 3.743272                 | 0.131440       | 3.606322               | 1,626.972166             | 2.424687             | 368.515322                | 0.007173   | 10.216195 |
| 9.500000  | 367.272893           | 0.673854     | 0.672881                 | 0.131440       | 3.606321               | 1,628.061164             | -6.846925            | 378.974003                | 0.000709   | 10.216191 |
| 10.000000 | 383.349079           | 0.123433     | 0.122284                 | 0.131440       | 2.431956               | 1,637.645626             | -21.058240           | 383.628171                | 0.000070   | 10.216184 |
| 10.500000 | 683.966927           | 0.020465     | 0.019316                 | 0.131446       | 0.264708               | 1,694.073381             | -39.188404           | 552.424752                | 0.000005   | 10.216705 |
|           |                      |              |                          |                |                        |                          |                      |                           |            |           |
| 11.000000 | 786.717176           | 0.007691     | 0.006542                 | 0.060071       | 0.034620               | 1,730.957523             | -65.661659           | 598.666335                | 0.000000   | 10.216884 |

# Caustic Titration with Pre-Aeration (Decarbonation) St. Michael: pre-aeration decreases $CO_2$ acidity, caustic usage, and sludge

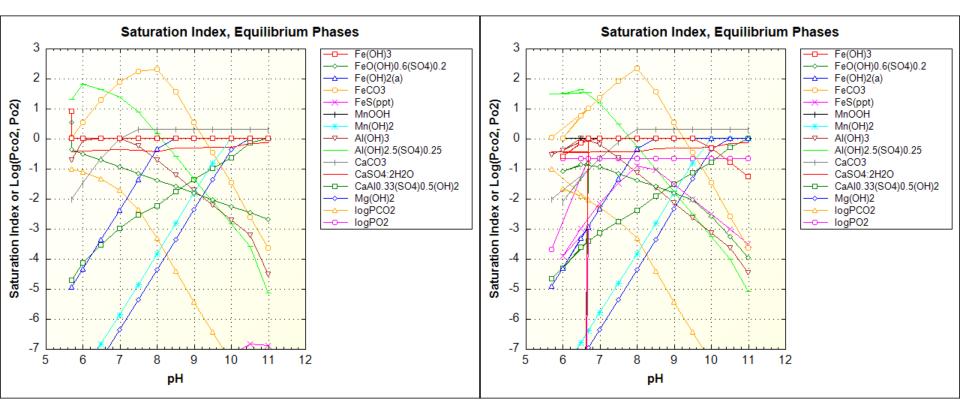


CausticTitration.exe: Pre-aerated (Graph1)



# Caustic Titration with Pre-Aeration (Decarbonation) St. Michael: pre-aeration decreases $CO_2$ acidity, caustic usage, and sludge

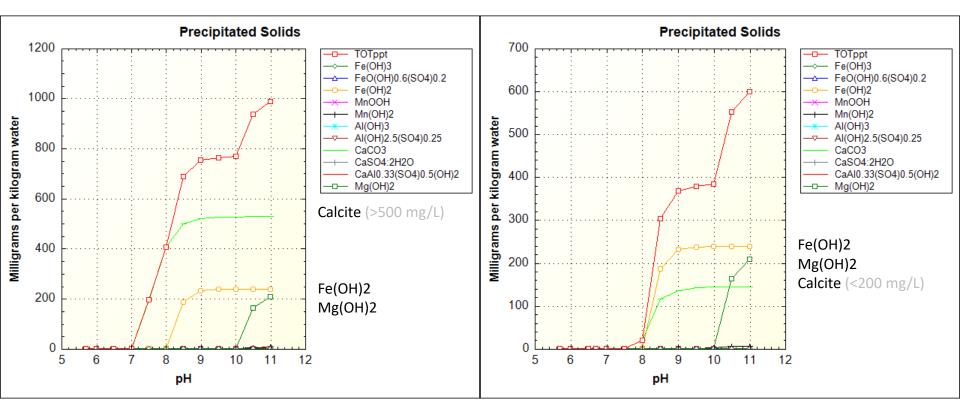
CausticTitration.exe: Not aerated (Graph2)


CausticTitration.exe: Pre-aerated (Graph2)



### Caustic Titration with Pre-Aeration (Decarbonation) St. Michael: pre-aeration decreases $CO_2$ acidity, caustic usage, and sludge

#### CausticTitration.exe: Not aerated (Graph3)


#### CausticTitration.exe: Pre-aerated (Graph3)



# Caustic Titration with Pre-Aeration (Decarbonation) St. Michael: pre-aeration decreases $CO_2$ acidity, caustic usage, and sludge

#### CausticTitration.exe: Not aerated (Graph4)

#### CausticTitration.exe: Pre-aerated (Graph4)



**pH** ≥ 8.5: Calcite > 500 mg/L pH ≥ 10.5: Mg(OH)2 > 100 mg/L **pH > 8.5: Calcite < 200 mg/L** pH **>** 10.5: Mg(OH)2 > 100 mg/L

Automatic scale change for Y axis

### PHREEQ-N-AMDTreat: Parallel & Sequential Models

|             |             |                                                 |                          |                                                    | Kinetics C      | onstants, i   | Adju        | stment Facto  | <sup>ors</sup> Kir | netics (a    | djustme                                                     | nt fact     | or app         | lied to                  | all steps)                              |
|-------------|-------------|-------------------------------------------------|--------------------------|----------------------------------------------------|-----------------|---------------|-------------|---------------|--------------------|--------------|-------------------------------------------------------------|-------------|----------------|--------------------------|-----------------------------------------|
|             |             | factr.kCO2                                      |                          | 1                                                  | factr.k0        | )2            | 2.1         |               | EXPcc              |              | 0.67                                                        |             |                |                          | sing (CO <sub>2</sub> /O <sub>2</sub> ) |
|             |             | factr.kFeHOM                                    | I                        | 1                                                  | factr.kF        | eHET          | 1           |               | 0.25               |              | on Oxid                                                     |             |                |                          |                                         |
|             |             | factr.kFeH2O2                                   | 2                        | 1                                                  | factr.kb        | act           | 1           |               | factr.kFe          | IIMnOx       | 1                                                           |             |                | - microb                 | eterogeneous<br>ial)                    |
|             |             | factr.kMnHON                                    | И                        | 1                                                  | factr.kN        | <b>I</b> nHFO | 1           |               | factr.kM           | nHMO         | 0.5                                                         |             |                | se Oxida                 |                                         |
|             |             | factr.kSHFO                                     |                          | 1                                                  | factr.kS        | 60C           | 100         | )             | factr.kD0          | DC           | 1                                                           | 0           | rganic C       | arbon C                  | xidation                                |
|             |             | SI_CaCO3                                        |                          | 0.3 ~                                              | SI_AI(O         | H)3           | 0.0         | ~             | SI_Fe(O            | H)3          | 0.0                                                         | V So        | olids Pre      | ecipitatio               | on                                      |
|             |             | SI_FeCO3,Mn                                     | CO3                      | 2.5 ~                                              | SI_Bas          | aluminite     | 3.0         | ~             | SI_Schw            | vertmannite  | 1.0                                                         | <u>ب</u> (۱ | saturati       | on index                 | /equilibrium)                           |
| Caustic     | ⊢ lf a      | dded at ste<br>adding caustic<br>Caustic checkb | at step 1,<br>oox(es) an | , 2, 3, 4, and/or<br>d enter target p<br>a(OH)2 ON | H value for the | e step(s)     | t, ac<br>20 | tivate releva |                    |              | I <sub>2</sub> O <sub>2</sub> estin<br>✓ Estima<br>1.52E-05 | te H2O2.n   |                | 00177                    | II oxidation                            |
|             |             | : Duration<br>H? Time.hrs                       |                          | Peroxide<br>C H2O2.mol                             |                 |               | -ten)       |               | stone/Com          | •            | orbent N<br>HMeO.m                                          | •           | mpositi<br>Mn% | ion (foi<br>Al%          | r each step)<br>Description             |
|             | 7.5         | 6                                               | 15.1                     |                                                    | 0.00066         | -3.4          | auni)<br>   | 0             |                    | 0            | 0                                                           | 100         | 0              | <b>N</b> <sup>1</sup> /• | Aer3                                    |
| ✓ 1:        |             |                                                 | 15.1                     |                                                    | 0.00066         | -5.4          | _           |               |                    | <u> </u>     | <u> </u>                                                    |             | U              |                          |                                         |
| ✓ 2:        | Caustic A   | ddition:                                        |                          | H <sub>2</sub> O <sub>2</sub> :                    | Outgassi        |               |             | Limeston      | ne / Organi        | c Carbon:    | Sorben                                                      | t (reciro   | culated        | solids):                 | Aer2                                    |
| 3:          | Steps 1 - 5 | 5                                               |                          |                                                    | Ingassing       | ;:            |             | Surface an    | rea (SAcc.cm       | n2/mol)      | Mass to                                                     | tal Fe+N    | 1n+Al (H       | MeO.mg                   | Aer1                                    |
| ✓ 4:        |             |                                                 |                          |                                                    | Rate (kLaC      | CO2.1/s)      |             | Mass avai     | ilable (M/M        | Occ)         | Compos                                                      | ition (%)   | ) Fe, Mn,      | , and Al                 | Aer0                                    |
| 5:          | Choose ca   | ustic agent                                     | j                        | factr.kFeH2O2                                      | factr.kCO2      |               |             | equilibriur   | n approach (l      | EXPcc)       |                                                             |             |                |                          | H2O2                                    |
| <b>6</b> :  | Specify tar | get pH                                          |                          |                                                    | factr.kO2       |               |             | calcite sat   | uration limit      | (SI_CaCO3)   |                                                             |             |                |                          | NULL                                    |
| 7:          |             |                                                 |                          |                                                    | steady-stat     | te logPCO     | 2           | Organic ca    | arbon mass         | available (  | SOC.mol)                                                    |             |                |                          | NULL                                    |
| 8:          |             |                                                 |                          |                                                    |                 |               |             | factr.kSHF    | O (reduction       | of FeIII)    |                                                             |             |                |                          | NULL                                    |
| 9:          |             |                                                 |                          |                                                    |                 |               |             | factr.kSOC    | C (solid organ     | ic carbon)   |                                                             |             |                |                          | NULL                                    |
| <b>10</b> : |             |                                                 |                          |                                                    |                 |               |             | factr.kDO     | C (dissolved o     | rganic carbo | on)                                                         |             |                |                          | NULL                                    |
| 11:         |             | 0                                               | 15.1                     | 0                                                  | 0               | -3.4          | $\sim$      | 0             | 1                  | 0            | 0                                                           | 0           | 0              | 0                        | NULL                                    |
|             |             |                                                 |                          |                                                    |                 |               |             |               |                    |              |                                                             |             |                |                          | L                                       |

Generate Kinetics Output

Print PHREEQC Output Report

### PHREEQ-N-AMDTreat: "ParallelTreatment.exe"

| Select folder f                         |                | •      | <u> </u>      |            | a\WestBranch                     |              | erationEvp |                 | Oa        | k Hil             | ΙB       | ore           | nol        | es (          | Ju               | ne-         | Jul        | y 2013)              | ) |
|-----------------------------------------|----------------|--------|---------------|------------|----------------------------------|--------------|------------|-----------------|-----------|-------------------|----------|---------------|------------|---------------|------------------|-------------|------------|----------------------|---|
| One or two                              |                |        | and near_ge   | ocalem_dat | a weetbrailtri                   |              | crationexp |                 |           |                   |          |               |            |               |                  |             |            | , - ,                |   |
| initial solutions:<br>Design flow (gpm) | Soln#A<br>4694 | Soln#B |               |            |                                  | Г            |            | -               |           | Adjustment Fac    | -        |               |            | 0.07          | — К              | inetic p    | arame      | ters use             |   |
| Mix fraction                            | 1              | 0      |               |            | factr.kCO2                       |              | •          | factr.k         |           | 2.1               |          | EXPcc         |            | 0.67          |                  |             |            | es" with             |   |
| Temp (C)                                | 15.1           | 0.01   |               |            | factr.kFeHOM                     |              | 1          | factr.k         |           | 1                 |          | factr.kFeNO3  |            | 0.25          |                  |             |            | actors for           |   |
| SC (uS/cm)                              | 1280           | 0      |               |            | factr.kFeH2O2                    |              |            | factr.kl        |           | 1                 |          | factr.kFellMn |            | 1             | a                | djustm      | ent.       |                      |   |
| DO (mg/L)                               | 1.6            | 0.01   |               |            | factr.kMnHON                     | · L          |            |                 | MnHFO     | 1                 |          | factr.kMnHM   | 0          | 0.5           |                  |             |            |                      |   |
| рН                                      | 6.4            | 0      |               |            | factr.kSHFO                      |              |            | factr.k         |           | 100               |          | factr.kDOC    |            | 1             |                  |             |            |                      |   |
| Acidity (mg/L)                          | 0              | 0      |               |            | SI_CaCO3                         |              | 0.3 ~      | SI_AI(          |           | 0.0 ~             | -        | SI_Fe(OH)3    |            | 0.0           | ~                |             |            |                      |   |
| Estimate NetAcidity                     | -107.8         | 0      |               |            | SI_FeCO3,Mn                      | CO3          | 2.5 ~      | SI_Bas          | aluminite | 3.0 ~             |          | SI_Schwertm   | lannite    | 1.0           | ~                |             |            |                      |   |
| Alk (mg/L)                              | 150            | 0      |               |            | adding caustic<br>Caustic checkb |              |            |                 |           | t, activate relev | vant     |               |            | 🗹 Estima      | ite H2O2.r       | mol/L 0.0   | 00177      | ]                    |   |
| TIC (mg/L as C)                         | 0              | 0      |               |            |                                  |              |            | la2CO3          |           | 20 ~ v            | vt% soln |               |            | 1.52E-05      | 35wt%            | 1.44E-05    | 5 50wt%    | -<br>-<br>2          |   |
| Estimate TIC                            | 63.5           | 0      |               |            |                                  | <b>T</b> 0.0 |            |                 |           |                   |          |               |            | H2O2 wt%      |                  | 2.          |            |                      |   |
| Fe (mg/L)                               | 19.7           | 0      |               | austic ?>p | H? Time.hrs                      | Temp2.0      | H2O2.mol   | kLaCO2.1/s      | -3.4      | .atm) SAcc.cm     | 2/mol    | M/MUCC :      | SOC.mo     | HMeO.m        | g Fe%            | Mn%         | AI%        | Description<br>Aer3  |   |
| Fe2 (mg/L)                              | 19.7           | 0      |               | 7.5        | 6                                | 15.1         | 0          | 0.0008          | -3.4      | ~ 0<br>~ 0        |          |               | _          | 0             |                  |             |            |                      |   |
| Estimate Fe2                            | 0              | 0      | ☑ 2: [        |            |                                  |              | 0          |                 |           |                   |          |               |            | 0             | 100              |             |            | Aer2                 |   |
| Al (mg/L)                               | 0.056          | 0      | ☑ 3: [        | 7.5        | 6                                | 15.1         | 0          | 0.00010         | -3.4      | ~ 0               | 1        | 0             |            | 0             | 100              | 0           | 0          | Aer1                 |   |
| Mn (mg/L)                               | 3.6            | 0      | ☑ 4: [        | 7.5        | 6                                | 15.1         | 0          | 0.000005        | -3.4      | ~ 0               | 1        | 0             | _          | 0             | 100              | 0           | 0          | Aer0                 |   |
| SO4 (mg/L)                              | 400            | 0      | <b>⊘</b> 5: [ | 7.5        | 6                                | 15.1         | 0.00018    | 0.000005        | -3.4      | ~ 0               | 1        | 0             |            | 0             | 100              | 0           | 0          | H2O2                 |   |
| Cl (mg/L)                               | 7.9            | 0      | 6:            |            | 0                                | 15.1         | 0          | 0               | -3.4      | ~ 0               | 1        | 0             |            | 0             | 0                | 0           | 0          | NULL                 |   |
| Ca (mg/L)                               | 79             | 0      | □ 7 <b>[</b>  | Para       | Ilel: i                          | ndo          | nenc       | lent .          | st01      |                   | 2 5      | ame           | inf        | luon          | + 1              | nto         | r ai       | uality.              |   |
| Mg (mg/L)                               | 64             | 0      | 8             | uru        |                                  | nue          | penc       | ieni .          |           | JJ UJ(            |          | ume           | ,          | luch          |                  | ure         | ' 40       | ianry.               |   |
| Na (mg/L)                               | 31.6           | 0      | 9             | Ini        | able                             | not          | ontio      | n tim           | 100       | tom               | hon      | atur          | 0          | $\sim$        |                  | -000        | cin        | 2                    |   |
| K (mg/L)                                | 1.74           | 0      |               |            |                                  |              |            |                 | -         | •                 |          |               | -          | _             |                  | -           | •          |                      |   |
| Si (mg/L)                               | 5.72           | 0      | 1             | ime        | stone                            | e sui        | rfac       | e are           | a, o      | rgani             | CC       | arbo          | on,        | sort          | oen <sup>.</sup> | t ma        | <b>155</b> | and                  |   |
| NO3N (mg/L)                             | 0.1            | 0      |               |            | positi                           |              |            |                 |           | -                 |          |               |            |               |                  |             |            |                      |   |
| TDS (mg/L)                              | 0              | 0      | C C           | 2011       | positi                           | UN,          | 120        | 2, cu           | usi       | c, uu             | Jus      | nubl          | CI         | ure           | Iu               |             | 5.         |                      |   |
| DOC (mg/L as C)                         | 0.1            | 0      |               |            | Plot                             | Dis. Metals  | F          | lot Ca, Acidity |           | Plot Sat Ind      | ex       |               | ot PPT S   | olids         |                  |             |            |                      |   |
| Humate (mg/L as C)                      | 0.1            | 0      |               |            |                                  |              |            |                 |           | ParallelTrea      | tment.e  | ke created by | y C.A. Cra | avotta III, U | .S. Geolog       | jical Surve | y. Versior | n 1.4.5, August 2021 |   |

Cravotta, C.A. III, 2021. Interactive PHREEQ-N-AMDTreat water-quality modeling tools to evaluate performance and design of treatment systems for acid mine drainage: Applied Geochemistry, 126, 10845. https://doi.org/10.1016/j.apgeochem.2020.104845



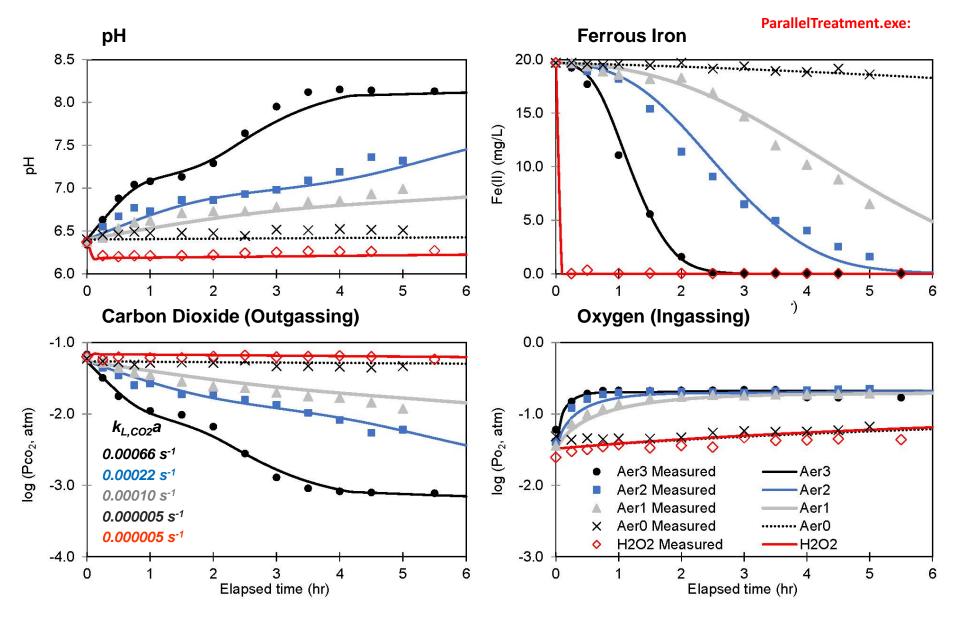
### PHREEQ-N-AMDTreat: Parallel Model

Effects of O<sub>2</sub> Ingassing and CO<sub>2</sub> Outgassing on pH and Fe<sup>II</sup> Oxidation Rates

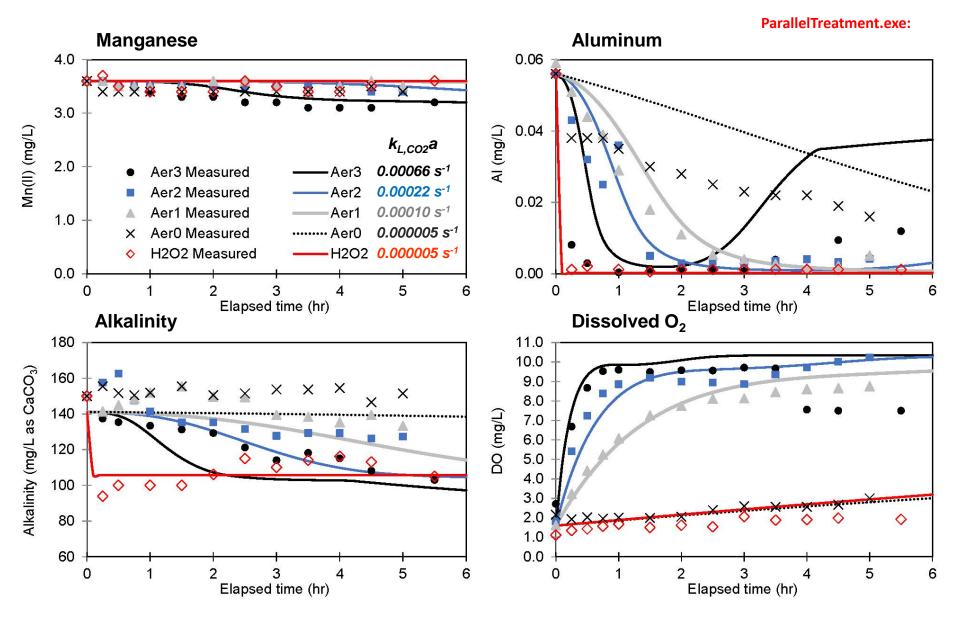
Batch Aeration Tests at Oak Hill Boreholes (summer 2013, 6-hour duration)

### **Control Not Aerated**

Aerated

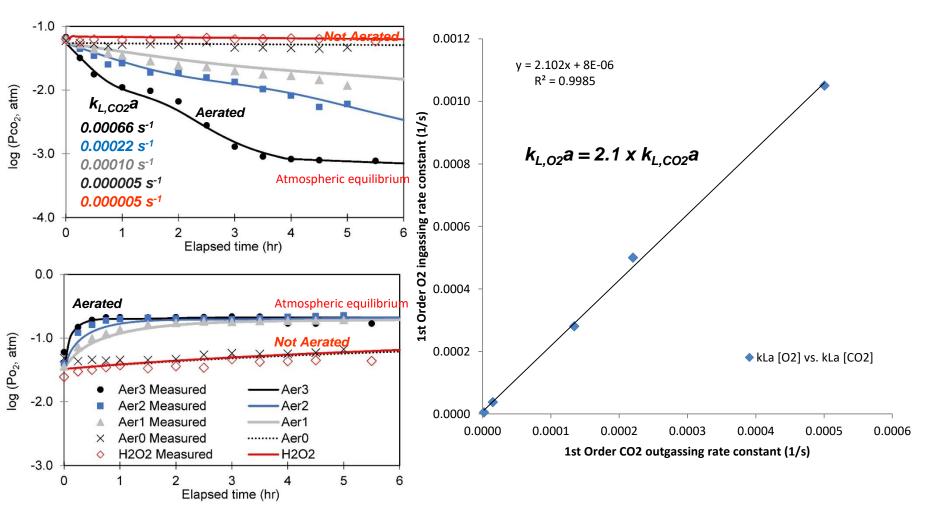

H<sub>2</sub>O<sub>2</sub> Addition








### PHREEQ-N-AMDTreat: Parallel Model Batch Aeration Tests at Oak Hill Boreholes




### PHREEQ-N-AMDTreat: Parallel Model Batch Aeration Tests at Oak Hill Boreholes



# $CO_2$ Outgassing is Proportional to $O_2$ Ingassing (model specifies first-order rates for out/in gassing)

 $-d[C]/dt = k_{L,C}a \cdot ([C] - [C]_S)$  exponential, asymptotic approach to steady state



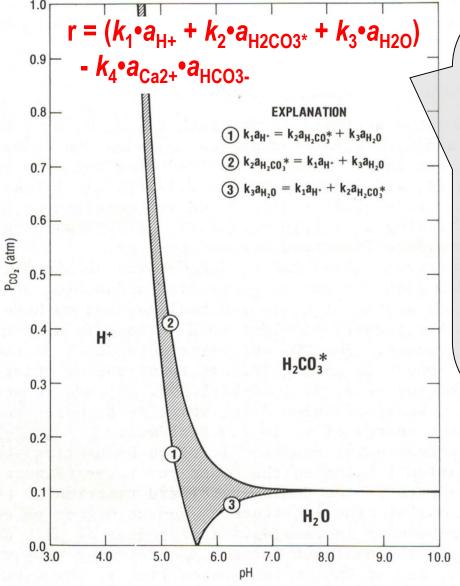
### CO<sub>2</sub> Outgassing & O<sub>2</sub> Ingassing Rate Constants Estimated for Various Treatment Technologies

| Table S2. Typical empirical values of rate constants for | for $CO_2$ out        | gassing and             | $O_2$ ingass          | ing                                        |                |
|----------------------------------------------------------|-----------------------|-------------------------|-----------------------|--------------------------------------------|----------------|
|                                                          | Temper-               | CO <sub>2</sub> Oι      | utgas                 | O <sub>2</sub> Ing                         | as             |
| Site                                                     | ature                 | k <sub>L,CO</sub>       | <sub>2</sub> a        | k <sub>L,02</sub>                          | а              |
|                                                          | (°C)                  | (s <sup>-1</sup> )      | log(s <sup>-1</sup> ) | (s <sup>-1</sup> )                         | $\log(s^{-1})$ |
| Treatment Systems                                        |                       |                         |                       |                                            |                |
| Maelstrom (Sykesville, Trent, St.Michaels)               | 20 Fast               | 0.03                    | -1.52                 | 0.063                                      | -1.20          |
| Surface Aerator (Renton, other)                          | 20                    | 0.001                   | -3.00                 | 0.0021                                     | -2.68          |
| Mechanical Aerator (Lancashire)                          | 20                    | 0.0006                  | -3.22                 | 0.00126                                    | -2.90          |
| Aeration Cascade/Level Spreader (Silver Cr)              | 20                    | 0.01                    | -2.00                 | 0.021                                      | -1.68          |
| Rip-rap Spillway/Ditch (Silver Cr, Pine Forest,          | 20                    | 0.005                   | -2.30                 | 0.0105                                     | -1.98          |
| Pond (Silver Cr, Pine Forest, Lion Mining, Flight93)     | 20                    | 0.00001                 | -5.00                 | 0.000021                                   | -4.68          |
| Wetland (Silver Cr, Pine Forest, Lion Mining)            | 20                    | 0.00001                 | -5.00                 | 0.000021                                   | -4.68          |
| Anoxic limestone drain (Pine Forest)                     | 20 <mark>Slo</mark> v | v0.000001               | -6.00                 | 0.0000021                                  | -5.68          |
| Oak Hill Aeration Expts.                                 |                       |                         |                       |                                            |                |
| Aer3                                                     | 20 Fast               | 0.00066                 | -3.18                 | 0.00139                                    | -2.86          |
| Aer2                                                     | 20                    | 0.00022                 | -3.66                 | 0.00046                                    | -3.34          |
| Aer1                                                     | 20                    | 0.00010                 | -4.00                 | 0.00021                                    | -3.68          |
| AerO                                                     | 20 <mark>Slov</mark>  | <mark>v</mark> 0.000005 | -5.30                 | 0.000011                                   | -4.98          |
| AerO                                                     | 0.000                 |                         |                       | a toy to so of a contract to the annual so | -4.98          |

\*Gas mass-transfer rate corrected to 20°C per Rathbun (1998, Eq. 56) using the expression:

kL,a\_20 = kL,a\_TC /(1.0241^(TC-20)).

kL,a\_TC = kL,a\_20 \* (1.0241^(TC-20)).




kL,a\_20 =  $(LN((C_1-C_s)/(C_2-C_s))/t) / (1.0241^{(TEMPC - 20)})$ , where C is CO<sub>2</sub> or O<sub>2</sub>. Dissolved O<sub>2</sub>, temperature, and pH were measured using submersible electrodes. Dissolved CO<sub>2</sub> was computed from alkalinity, pH, and temperature data.

# KINETICS OF LIMESTONE DISSOLUTION – pH, CO<sub>2</sub>, and SURFACE AREA EFFECTS



### Limestone Dissolution Rate Model for AMDTreat ("PWP" model emphasizes pH and CO<sub>2</sub>)



According to Plummer, Wigley, and Parkhurst (1978), the rate of  $CaCO_3$ dissolution is a function of three forward (dissolution) reactions:  $CaCO_3 + H^+ \rightarrow Ca^{2+} + HCO_3^$  $k_1$  $CaCO_3 + H_2CO_3^* \rightarrow Ca^{2+} + 2 HCO_3^$  $k_2$  $CaCO_3 + H_2O \rightarrow Ca^2 + HCO_3 + OH^2$  $k_3$ and the backward (precipitation) reaction:  $Ca^{2+} + HCO_{3-} \rightarrow CaCO_{3} + H^{+}$ K₄

Although H<sup>+</sup>,  $H_2CO_3^*$ , and  $H_2O$  reaction with calcite occur simultaneously, the forward rate is dominated by a single species in the fields shown. More than one species contributes significantly to the forward rate in the gray stippled area. Along the lines labeled 1, 2, and 3, the forward rate attributable to one species balances that of the other two.

### Limestone Dissolution Rate Model for AMDTreat (surface area correction for coarse aggregate)

Surface area for various coarse aggregates (bold indicates sizes commonly used in limestone beds; 2NS used in cubitainers).

| Gradation | Number | Weight (g)          | Pa           | rticle Dime       | nsions (c     | m)              | Particle S                | urface Ar | ea (cm^2) | Unit Surface Area (cm^2/g) |        |           |  |  |
|-----------|--------|---------------------|--------------|-------------------|---------------|-----------------|---------------------------|-----------|-----------|----------------------------|--------|-----------|--|--|
| AASHTO    | PA     | Average<br>Particle | Long<br>Axis | Inter-<br>mediate | Short<br>Axis | Average<br>Axis | Rectan-<br>gular<br>Prism | Sphere    | Ellipsoid | Rectan-<br>gular<br>Prism  | Sphere | Ellipsoid |  |  |
| R-5       |        | 22160.145           | 45.72        | 22.86             | 13.34         | 27.31           | 3919.35                   | 2342.26   | 2862.08   | 0.18                       | 0.11   | 0.13      |  |  |
| R-4       |        | 7113.133            | 30.48        | 16.51             | 8.89          | 18.63           | 1841.93                   | 1089.98   | 1319.11   | 0.26                       | 0.15   | 0.19      |  |  |
| R-3       |        | 1185.522            | 16.51        | 8.89              | 5.08          | 10.16           | 551.61                    | 324.29    | 395.61    | 0.47                       | 0.27   | 0.33      |  |  |
| 1         | 4      | 341.978             | 8.89         | 6.35              | 3.81          | 6.35            | 229.03                    | 126.68    | 155.24    | 0.67                       | 0.37   | 0.45      |  |  |
| 3         | 3A     | 78.166              | 5.08         | 3.81              | 2.54          | 3.81            | 83.87                     | 45.60     | 56.39     | 1.07                       | 0.58   | 0.72      |  |  |
| 5         |        | 9.771               | 2.54         | 1.91              | 1.27          | 1.91            | 20.97                     | 11.40     | 14.10     | 2.15                       | 1.17   | 1.44      |  |  |
| 57        | 2B     | 3.257               | 2.54         | 1.27              | 0.635         | 1.48            | 11.29                     | 6.90      | 8.25      | 3.47                       | 2.12   | 2.53      |  |  |
|           | 2NS    | 9.771               | 2.54         | 1.91              | 1.27          | 1.91            | 20.97                     | 11.40     | 14.10     | 2.15                       | 1.17   | 1.44      |  |  |
| 67        | 2      | 1.832               | 1.91         | 0.95              | 0.635         | 1.16            | 7.26                      | 4.26      | 5.28      | 3.96                       | 2.32   | 2.88      |  |  |
|           | 1NS    | 1.221               | 1.27         | 0.95              | 0.635         | 0.95            | 5.24                      | 2.85      | 3.52      | 4.29                       | 2.33   | 2.89      |  |  |
| 7         |        | 1.221               | 1.27         | 0.95              | 0.635         | 0.95            | 5.24                      | 2.85      | 3.52      | 4.29                       | 2.33   | 2.89      |  |  |
| 8         |        | 0.382               | 0.95         | 0.79              | 0.3175        | 0.69            | 2.62                      | 1.49      | 1.70      | 6.87                       | 3.90   | 4.44      |  |  |
|           | 1B     | 0.382               | 0.95         | 0.79              | 0.3175        | 0.69            | 2.62                      | 1.49      | 1.70      | 6.87                       | 3.90   | 4.44      |  |  |

Particle dimensions were estimated on the basis of ranges for graded materials reported in Pennsylvania Department of Environmental Protection, 2000, Erosion and sediment pollution control program manual: Harrisburg, Pennsylvania Dept. Environmental Protection Bureau of Watershed Management, Document No. 363-2134-008, 180 p. (tables 9 and 10A).

Plummer, Wigley, and Parkhurst (1978) reported unit surface area (SA) of 44.5 and 96.5 cm<sup>2</sup>/g for "coarse" and "fine" particles, respectively, used for empirical testing and development of PWP rate model. These SA values are 100 times larger than those for typical limestone aggregate. *Multiply cm<sup>2</sup>/g by 100 g/mol to get surface area (A) units of cm<sup>2</sup>/mol used in AMDTreat rate model.* 

Surface area computed for various geometric forms:

Sphere: 4pi\*(Average of Axes/2)^2

Rectangular Prism: 2\*(Long Axis\*Short Axis)+2\*(Long Axis\*Intermediate Axis)+2\*(Short Axis\*Intermediate Axis)

Ellipsoid:  $(pi*D^2)/S$ , where  $D=2*(vol/(4/3pi))^{(1/3)}$ 

S=1.15-0.25E

E=Long Axis/D

Volume computed for same geometric forms:

Sphere: 4/3\*pi\*(Average Axis/2)^3

Rectangular Prism: (Long Axis\*Short Axis\*Intermediate Axis)

Ellipsoid: 4/3\*pi\* (Long Axis/2\*Short Axis/2\*Intermediate Axis/2)

For ellipsoid sphere, this reduces to 0.5236\*Long Axis\*Short Axis\*Intermediate Axis

Santomartino and Webb (2007, AG, 22:2344-2361) estimated volume of ellipsoid as 0.6\*volume of rectangular prism of same dimensions.

### PHREEQ-N-AMDTreat "TreatTrainMix2.exe":

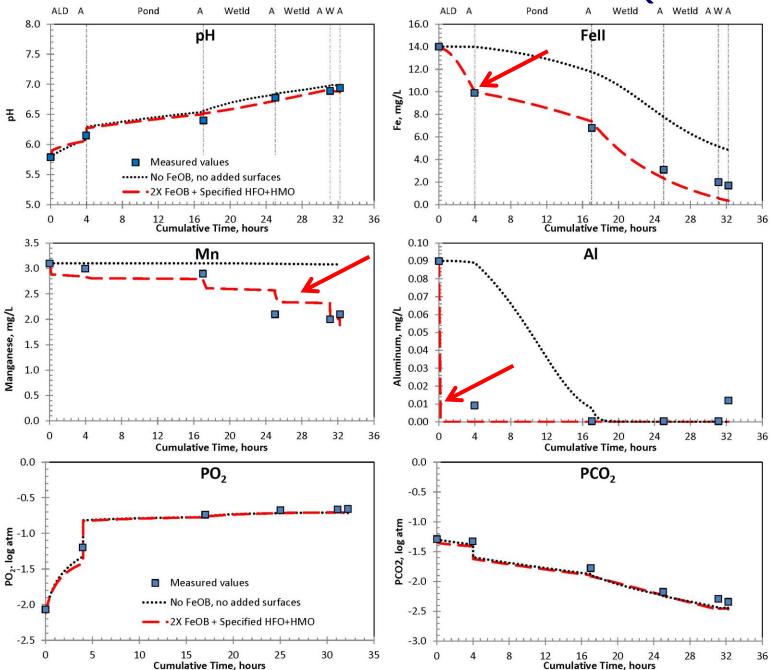
| Select folder fo                        | older for input/output water-quality |             |             | Tre       | eatTrai                          | i <b>nM</b> i | ix2.exe     | e Seq           | uen          | tia     | l Mod           | lel         | of       | Succe        | ssive           | Trea      | atme                        | ent S     | teps (1-11)               |
|-----------------------------------------|--------------------------------------|-------------|-------------|-----------|----------------------------------|---------------|-------------|-----------------|--------------|---------|-----------------|-------------|----------|--------------|-----------------|-----------|-----------------------------|-----------|---------------------------|
|                                         | \Users\cravotta                      | Nocuments\A | MDTreat_geo | chem_data | a\WestBranch\                    | OAK+PK        | N           |                 |              |         |                 |             |          |              |                 |           |                             |           |                           |
| One or two                              | Soln#A                               | Soln#B      |             |           |                                  |               |             | Kinetics C      | onstants.    | Adius   | stment Facto    | rs          |          |              |                 |           |                             |           | ters use                  |
| initial solutions:<br>Design flow (gpm) | 2830                                 | 8976        |             |           | factr.kCO2                       |               | 1           | factr.k0        | 12           | 2.1     |                 | F           | EXPcc    |              | 0.67            |           |                             |           | es" with<br>actors for    |
| Mix fraction                            | 0.24                                 | 0.76        |             |           | factr.kFeHOM                     |               | 1           | factr.kF        |              | 1       |                 |             | actr.kFe | NO3          | 0.25            |           | djustme                     |           |                           |
| Temp (C)                                | 14.7                                 | 10.9        |             |           | factr.kFeH2O2                    | 2             | 1           | factr.kb        |              | 1       |                 |             | actr.kFe |              | 1               |           | ajastin                     |           |                           |
| SC (uS/cm)                              | 1000                                 | 570         |             |           | factr.kMnHOM                     |               | 1           |                 | <b>InHFO</b> | 1       |                 |             | actr.kMr |              | 0.5             |           |                             |           |                           |
| DO (mg/L)                               | 2                                    | 9.9         |             |           | factr.kSHFO                      |               | 1           | factr.ks        |              | 100     | )               |             | actr.kD0 |              | 1               |           |                             |           |                           |
| pН                                      | 6.3                                  | 6.4         |             |           | SI_Fe(OH)3                       |               | 0.0 ~       | SI_AI(O         | )H)3         | 0.0     | ~               |             | GI_CaCC  |              | 0.3             | ~         | Solids I                    | Precipi   | tation                    |
| Acidity (mg/L)                          | -111                                 | -20         |             |           | SI_Schwertma                     | nnite         | 1.0 ~       | SI_Bas          | aluminite    | 3.0     | ~               | S           | SI_FeCO  | 3,MnCO3      | 2.5             | ~         | (SI=0 is                    | s equili  | brium)                    |
| Estimate NetAcidity                     | -110.6                               | -19.9       | Optio       | on to ad  | ld specified                     | d caust       | ic agent to | o adjust pl     | H at be      | gini    | ning of st      | eps         | 1-5:     |              |                 |           |                             |           |                           |
| Alk (mg/L)                              | 150                                  | 34          |             |           | adding caustic<br>Caustic checkb |               |             |                 |              | nt, act | tivate relevar  | nt          |          |              | 🗹 Estima        | te H2O2.r | nol/L 7.4                   | E-05      |                           |
| TIC (mg/L as C)                         | 0                                    | 0           |             |           | 🔿 CaO                            |               | (OH)2 O N   |                 |              | 20      | ∼ wt            | soln 🖁      |          |              | 6.4E-06         |           | 6E-06                       | 50wt%     |                           |
| 🗹 Estimate TIC                          | 73.3                                 | 15.7        | Step +Ca    | austic?>p | H? Time.hrs                      | Temp2(        | C H2O2.mol  | kL=CO21/a       |              | (atm)   | SAcc cm2/       | nol M       | 1/M0ee   | 500 mg       | HDOD4%          | unto gou  | <del>gal (meme</del><br>Mn% | Al%       | Description               |
| Fe (mg/L)                               | 18                                   | 5.15        |             | 7.5       | 0.25                             | 14.7          |             | 0.000005        | -3.4         |         | 0               |             |          | 0            | 0               | 100       | 0                           | 0         | Sedimentation pond        |
| Fe2 (mg/L)                              | 18                                   | 5.15        | ☑ 1: [      | 7.5       | 0.05                             | 14.7          | 0.000074    | 0.005           | -3.4         |         | 0               | 」( <u> </u> |          |              | 0               | 100       |                             | 0         | H2O2+Mixing               |
| Estimate Fe2                            | 0                                    | 0           | ☑ 2:        |           |                                  |               |             |                 |              | _       |                 |             |          |              |                 |           |                             |           | -                         |
| AI (mg/L)                               | 0.06                                 | 0.07        | ☑ 3:        | 7.5       | 4                                | 15.1          | 0           | 0.000005        | -3.4         | =       | 0               | 1           |          | 0            | 3               | 99.8      | 0.1                         | 0.1       | Oxidation/settling pond   |
| Mn (mg/L)                               | 3.7                                  | 2.45        | ☑ 4: [      | 7.5       | 0.01667                          | 15.1          | 0           | 0.005           | -3.4         | ~       | 33              |             |          | 0            | 2               | 99.8      | 0.1                         | 0.1       | Aeration riprap           |
| SO4 (mg/L)                              | 390                                  | 240         |             | 7.5       | 1                                | 15.5          |             | 0.000005        | -3.4         | ~       | 144             |             |          | <b>TO#</b> 5 | 2               | 95        | 5                           | 0         | Aerobic wetland           |
| Cl (mg/L)                               | 8.8                                  | 17.5        | <b>⊠</b> 6: |           | 0.0333                           | 15.5          | 0           | 0.005           | -3.4         | ~       | 33              |             | R-3      |              | 2               | 95        | 5                           | 0         | Aeration riprap           |
| Ca (mg/L)                               | 99                                   | 40.5        | 7:          |           | 0.5                              | 16            | 0           | 0.0005          | -3.4         | ~       | 72              |             |          | <b>T</b> O#3 | 20              | 10        | 90                          | 0         | Mn removal bed            |
| Mg (mg/L)                               | 55                                   | 42          | 8:          |           | 0.01667                          | 17            | 0           | 0.005           | -3.4         | ~       | 33              | 1           | R-3      | 0            | 1               | 100       | 0                           | 0         | Ditch                     |
| Na (mg/L)                               | 32                                   | 10          | 9:          | Sea       | uenti                            | al '          | Varia       | hle r           | ete          | n       | tion            | tir         | ne       | s te         | mne             | rat       | ure                         | H         | $\mathbf{O}_{\mathbf{a}}$ |
| K (mg/L)                                | 1.74                                 | 1.77        |             | •         |                                  |               |             |                 |              |         |                 |             |          | -            | •               |           |                             | -         |                           |
| Si (mg/L)                               | 5.72                                 | 5.72        |             |           | stic, (                          |               |             |                 |              |         |                 |             |          |              | ace             | arec      | 1, OI                       | rgai      | าเด                       |
| NO3N (mg/L)                             | 0.1                                  | 0.1         |             | cart      | oon, s                           | ort           | oent.       | plus            | adi          | us      | stab            | e           | rat      | tes.         |                 |           |                             |           |                           |
| TDS (mg/L)                              | 0                                    | 0           |             |           | ••••                             |               |             | F               | J            |         |                 | _           |          |              |                 |           |                             |           |                           |
| DOC (mg/L as C)                         | 0.1                                  | 0           |             |           | Plot [                           | Dis. Metal    | s P         | lot Ca, Acidity |              | P       | lot Sat Index   |             |          | Plot PPT     | Solids          |           |                             |           |                           |
| Humate (mg/L as C)                      | 0.1                                  | 0           |             |           |                                  |               |             |                 |              | Т       | reat Train Mix2 | 2.exe (     | created  | by C.A. Crav | votta III, U.S. | Geologica | al Survey.                  | Version 1 | .4.5, August 2021         |

Cravotta, C.A. III, 2021. Interactive PHREEQ-N-AMDTreat water-quality modeling tools to evaluate performance and design of treatment systems for acid mine drainage: Applied Geochemistry, 126, 10845. https://doi.org/10.1016/j.apgeochem.2020.104845

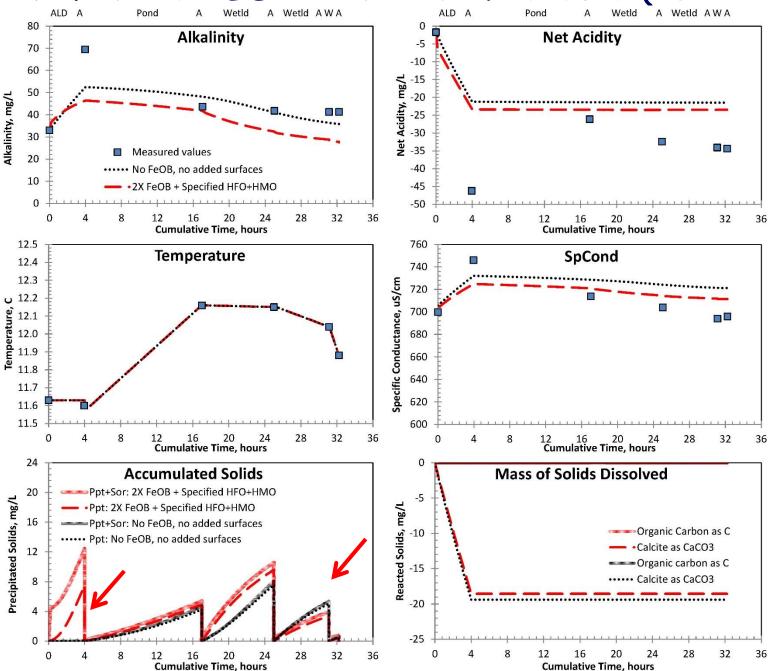
### PHREEQ-N-AMDTreat: TreatTrainMix2 Model Pine Forest ALD\* + Pond + Aerobic Wetlands



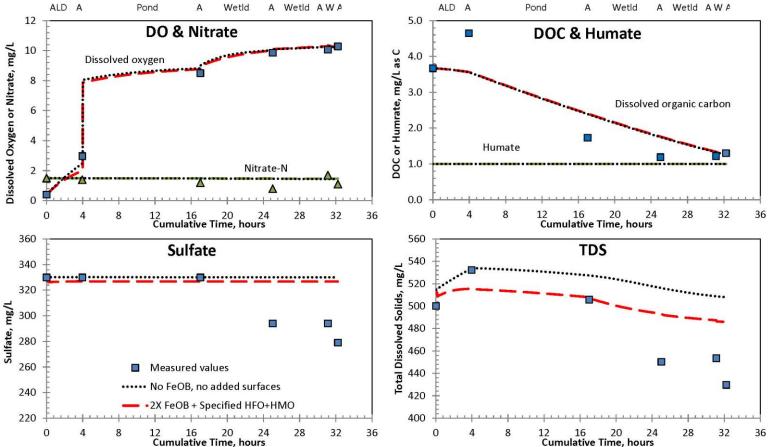
| <u>Step</u><br>0<br>1<br>2 | <u>Treatment</u><br>Untreated<br>ALD<br>Riprap |
|----------------------------|------------------------------------------------|
| 3                          | Pond                                           |
| 4                          | Riprap                                         |
| 5                          | Wetland                                        |
| 6                          | Cascade                                        |
| 7                          | Wetland                                        |
| 8                          | Cascade                                        |
| 9                          | Wetland                                        |
| 10                         | Riprap                                         |
| 11                         | NULL                                           |
|                            |                                                |


#### \*Flushable ALD, Biofouled

## PHREEQ-N-AMDTreat: TreatTrainMix2 Model


| TreatTra                                                                                                                                                                                                                                                                                                 |        |        |             |              |                                  | -          |                               | Bic              | foi         | ıl,    | ed A           | ID-         | Aer            | obic           | Po           | nd-        | +W/          | etlands                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|-------------|--------------|----------------------------------|------------|-------------------------------|------------------|-------------|--------|----------------|-------------|----------------|----------------|--------------|------------|--------------|-------------------------|
| TreatTrainMix2.exe:       Passive treatment         t Workspace       C:\Users\cravotta\Documents\AMDTreat_geochem_data\MillCreek\PineForestLowerTreatment       Biofouled ALD+Aerobic Pond+Wetlands         Soln#A       Soln#B       Kinetics Constants, Adjustment Factors       Pine Forest (151212) |        |        |             |              |                                  |            |                               |                  |             |        |                |             |                |                |              |            |              |                         |
|                                                                                                                                                                                                                                                                                                          | Soln#A | Soln#B |             |              |                                  |            |                               | Kinetics         | Constants,  | Adju   | stment Factor  | s           |                | Ine            | 10           | res        | † (J         | (51212)                 |
| esign flow (gpm)                                                                                                                                                                                                                                                                                         | 690    | 0      |             |              | factr.kCO2                       |            | 1                             | factr.k          | 02          | 2.1    |                | EXPco       | ;              | 0.67           |              |            |              |                         |
| lix fraction                                                                                                                                                                                                                                                                                             | 1      | 0      |             |              | factr.kFeHOM                     |            | 1                             | factr.k          | FeHET       | 1      |                | factr.k     | FeNO3          | 0.25           |              |            |              |                         |
| emp (C)                                                                                                                                                                                                                                                                                                  | 11.63  | 0.01   |             |              | factr.kFeH2O2                    | 2          | 1                             | factr.k          | bact        | 2      |                | factr.k     | FellMnOx       | 1              |              |            |              |                         |
| C(uS/cm)                                                                                                                                                                                                                                                                                                 | 700    | 0      | _           |              | factr.kMnHOM                     | 1          | 1                             | factr.k          | MnHFO       | 1      |                | factr.k     | MnHMO          | 0.5            |              |            |              |                         |
| )O (mg/L)                                                                                                                                                                                                                                                                                                | 0.4    | 0.01   |             |              | factr.kSHFO                      |            | 1                             | factr.k          | SOC         | 100    | )              | factr.k     | DOC            | 5              |              |            |              |                         |
| н                                                                                                                                                                                                                                                                                                        | 5.79   | 0      |             |              | SI_Fe(OH)3                       |            | 0.0                           | SI_AI(           | DH)3        | 0.0    | ~              | SI_Ca       | 003            | 0.3            | $\sim$       |            |              |                         |
| cidity (mg/L)                                                                                                                                                                                                                                                                                            | 0      | 0      |             |              | SI_Schwertma                     | innite     | 1.0                           | ✓ SI_Ba:         | aluminite   | 3.0    | ~              | SI_Fe       | CO3,MnCO3      | 2.5            | $\sim$       |            |              |                         |
| Estimate NetAcidity                                                                                                                                                                                                                                                                                      | -1.7   | 0      |             |              |                                  |            |                               |                  |             |        |                |             |                |                |              |            |              |                         |
| lk (mg/L)                                                                                                                                                                                                                                                                                                | 33     | 0      |             |              | adding caustic<br>Caustic checkb |            |                               |                  |             | nt, ac | tivate relevan | t           |                | 🗹 Estima       | te H2O2.r    | nol/L 0.0  | 00126        |                         |
| TC (mg/L as C)                                                                                                                                                                                                                                                                                           | 0      | 0      |             |              | ⊖ CaO                            | (он)2 О    | ○ Na2CO3 ○ NaOH 20 → wt% soln |                  |             |        |                |             | 1.08E-05       |                | 1.02E-05     |            |              |                         |
| Estimate TIC                                                                                                                                                                                                                                                                                             | 39.2   | 0      | 0           | C            | UD T 1                           | т ос       |                               | LL-002.1/        | 1_(000)     |        | CA             |             | 505            |                |              | -          | ), not used) |                         |
| e (mg/L)                                                                                                                                                                                                                                                                                                 | 14     | 0      |             | -Caustic ?>p | H? Time.hrs                      | 11.63      | C H2O2.mo                     | kLaCO2.1/s       | Lg(PCO2     | atm)   | 72             |             | c SOC.mo       | HMeO.m         | g Fe%<br> 99 | Mn%        | AI%          | Description             |
| e2 (mg/L)                                                                                                                                                                                                                                                                                                | 14     | 0      | ☑ 1:        |              | 4                                |            |                               |                  |             | _      |                | <br>        |                | 110            |              |            |              |                         |
| Estimate Fe2                                                                                                                                                                                                                                                                                             | 0      | 0      | ✓ 2:        | 7.5          | 0.0083                           | 11.6       | 0                             | 0.02             | -3.4        | _      | 33             |             | 0              |                | 95           | 5          | 0            | Aeration riprap         |
| l (mg/L)                                                                                                                                                                                                                                                                                                 | 0.09   | 0      | <b>⊘</b> 3: | 7.5          | 13                               | 12.16      | 0                             | 0.00002          | -3.4        | _      | 0              | 1           | 0              | 3              | 95           | 5          | 0            | Oxidation/settling pond |
| In (mg/L)                                                                                                                                                                                                                                                                                                | 3.1    | 0      | ✓ 4:        | 7.5          | 0.0028                           | 12.16      | 0                             | 0.005            | -3.4        | ~      | 0              | 1           | 0              | 1              | 95           | 5          | 0            | Aeration cascade        |
| 04 (mg/L)                                                                                                                                                                                                                                                                                                | 330    | 0      | <b>⊘</b> 5: | 7.5          | 8                                | 12.15      | 0                             | 0.00005          | -3.4        | ~      | 0              | 1           | 0.1            | 3              | 60           | 40         | 0            | Aerobic wetland         |
| 1 (mg/L)                                                                                                                                                                                                                                                                                                 | 4      | 0      | <b>⊘</b> 6: |              | 0.0028                           | 12.15      | 0                             | 0.005            | -3.4        | $\sim$ | 0              | 1           | 0              | 1              | 60           | 40         | 0            | Aeration riprap         |
| a (mg/L)                                                                                                                                                                                                                                                                                                 | 56     | 0      | 7:          |              | 6.1                              | 12.04      | 0                             | 0.00005          | -3.4        | $\sim$ | 0              | 1           | 0.1            | 2              | 40           | 60         | 0            | Aerobic wetland         |
| lg (mg/L)                                                                                                                                                                                                                                                                                                | 51     | 0      | 8:          |              | 0.0028                           | 12.04      | 0                             | 0.005            | -3.4        | $\sim$ | 0              | 1           | 0              | 1              | 40           | 60         | 0            | Aeration riprap         |
| la (mg/L)                                                                                                                                                                                                                                                                                                | 7.4    | 0      | <b>⊘</b> 9: |              | 1.1                              | 11.88      | 0                             | 0.00001          | -3.4        | $\sim$ | 0              | 1           | 0.1            | 2              | 20           | 80         | 0            | Aerobic wetland         |
| (mg/L)                                                                                                                                                                                                                                                                                                   | 0.54   | 0      | ✓ 10:       |              | 0.0042                           | 11.88      | 0                             | 0.005            | -3.4        | ~      | 0              | 1           | 0              | 1              | 20           | 80         | 0            | Aeration riprap         |
| i (mg/L)                                                                                                                                                                                                                                                                                                 | 5.4    | 0      | 11:         |              | 0                                | 11.88      | 0                             | 0                | -3.4        | $\sim$ | 0              | 1           | 0              | 0              | 100          | 0          | 0            | NULL                    |
| IO3N (mg/L)                                                                                                                                                                                                                                                                                              | 1.5    | 0      |             |              |                                  |            |                               |                  |             |        |                |             |                |                |              |            |              |                         |
| DS (ma/L)                                                                                                                                                                                                                                                                                                | 450    | 0      |             |              |                                  |            | 1                             | Gene             | rate Kineti | cs Ou  | itput          | 1           |                | D Pr           |              | EQC Outpu  | t Depert     |                         |
| 03 (mg/L)<br>10C (mg/L as C)                                                                                                                                                                                                                                                                             | 3.67   | 0      |             |              |                                  | Dis. Metal |                               | Plot Ca, Acidity |             |        | lot Sat Index  | -           |                |                |              | lac outpu  | rneport      |                         |
|                                                                                                                                                                                                                                                                                                          |        | 0      |             |              |                                  | Dist metal | • L                           | FIOL Ca, ACIDILY |             |        |                |             |                |                |              |            |              |                         |
| lumate (mg/L as C)                                                                                                                                                                                                                                                                                       | 0.67   | U      |             |              |                                  |            |                               |                  |             | Т      | reatTrainMix2  | .exe create | ed by C.A. Cra | votta III, U.S | . Geologica  | al Survey. | Version 1    | .4.5, August 2021       |

Variable retention times, temperature, (caustic,  $H_2O_2$ ,)  $CO_2$  outgassing/ingassing, limestone surface area, organic carbon, sorbent, plus adjustable rates.

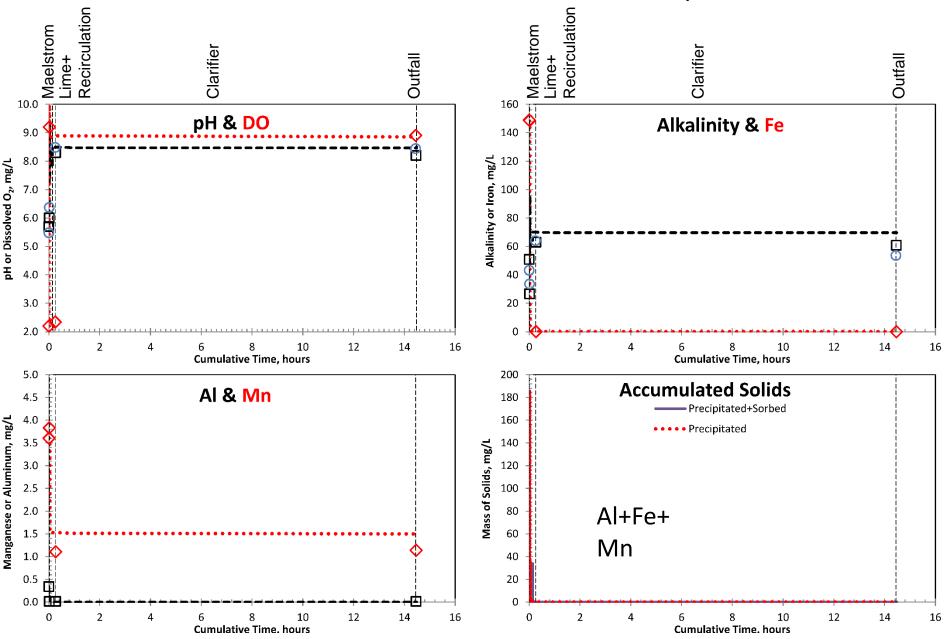

### Pine Forest ALD + Aerobic Wetlands (151212)



#### Pine Forest ALD + Aerobic Wetlands (151212)



Pine Forest ALD + Aerobic Wetlands (151212)




## Pre-Aeration, Lime Dosing, Solids Recirculation

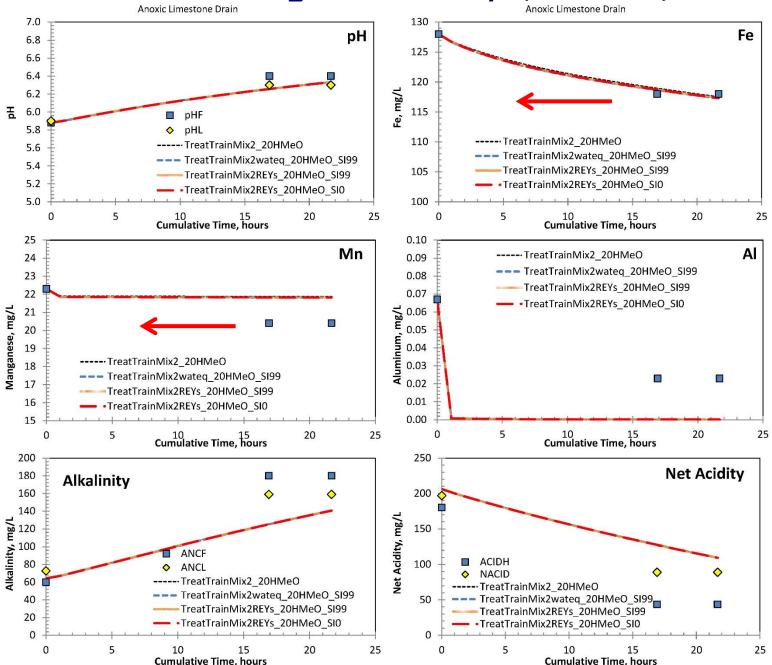
| TreatTrai           | nMix2                                                             | .exe: A | ctiv                                                                                                                                                                        | e tre     | atment       |           |                       |                               |             |        |              |                 |                                                              | C               | 5+                              | Mid               | ha        | el AMD:                       |  |  |
|---------------------|-------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------|-----------|-----------------------|-------------------------------|-------------|--------|--------------|-----------------|--------------------------------------------------------------|-----------------|---------------------------------|-------------------|-----------|-------------------------------|--|--|
| Select Workspace    | ace C:\Users\cravotta\Documents\AMDTreatTrainREYs_wateq\StMichael |         |                                                                                                                                                                             |           |              |           |                       |                               |             |        |              |                 |                                                              |                 |                                 |                   |           |                               |  |  |
|                     | Soln#A                                                            | Soln#B  | Kinetics Constants, Adjustment Factors net acidic with                                                                                                                      |           |              |           |                       |                               |             |        |              |                 |                                                              |                 |                                 |                   |           |                               |  |  |
| Design flow (gpm)   | 5200                                                              | 0       |                                                                                                                                                                             |           | factr.kCO2   |           | 1 factr.kO2 2.1 EXPcc |                               |             |        |              |                 |                                                              | 0.67            | D.67 biob Eo & CO               |                   |           |                               |  |  |
| Mix fraction        | 1                                                                 | 0       |                                                                                                                                                                             |           | factr.kFeHOM | 1         | 1                     | factr.kFeHET 1 factr.kFeNC    |             |        |              | eNO3            | <sup>0.67</sup><br><sub>0.25</sub> high Fe & CO <sub>2</sub> |                 |                                 |                   |           |                               |  |  |
| Temp (C)            | 15.4                                                              | 0.01    |                                                                                                                                                                             |           | factr.kFeH20 | 2         | 1                     | factr.kbact 1                 |             |        | factr.kF     | ellMnOx         | 1                                                            | 📃 moderate M    |                                 |                   |           |                               |  |  |
| SC (uS/cm)          | 1923                                                              | 0       |                                                                                                                                                                             |           | factr.kMnHOI | M         | 1                     | factr.kl                      | MnHFO       | 1      |              | factr.kN        | InHMO                                                        | 0.5             |                                 | THC.              |           |                               |  |  |
| DO (mg/L)           | 2.2                                                               | 0.01    | 1                                                                                                                                                                           |           | factr.kSHFO  |           | 1                     | factr.ks                      | SOC         | 100    |              | factr.kE        | OOC                                                          | 1               |                                 |                   |           |                               |  |  |
| pН                  | 5.7                                                               | 0       |                                                                                                                                                                             |           | SI_Fe(OH)3   |           | 0.0                   | SI_AI(C                       | DH)3        | 0.0    | ~            | SI_CaC          | :03                                                          | 2.5             | ~                               |                   |           |                               |  |  |
| Acidity (mg/L)      | 254.2                                                             | 0       |                                                                                                                                                                             |           | SI_Schwertma | annite    | 1.0                   | ✓ SI_Bas                      | aluminite   | 3.0    | ~            | SI_FeC          | O3,MnCO3                                                     | 2.5             | ~                               |                   |           |                               |  |  |
| Estimate NetAcidity | 223                                                               | 0       |                                                                                                                                                                             |           |              |           |                       |                               |             |        |              |                 |                                                              |                 |                                 |                   |           | _                             |  |  |
| Alk (mg/L)          | 50.8                                                              | 0       | If adding caustic at step 1, 2, 3, 4, and/or 5: choose caustic agent, activate relevant<br>+Caustic checkbox(es) and enter target pH value for the step(s)                  |           |              |           |                       |                               |             |        |              |                 |                                                              |                 |                                 |                   |           | ]                             |  |  |
| TIC (mg/L as C)     | 57.3                                                              | 0       |                                                                                                                                                                             |           | ● CaO        | ⊖ Ca      | (OH)2 O               | H)2 ONa2CO3 ONaOH 20 vt% soln |             |        |              |                 |                                                              |                 | 0.0001143 35wt% 0.0001082 50wt% |                   |           |                               |  |  |
| Estimate TIC        | 63.5                                                              | 0       | H2O2 wt% units gal/gal (memo, not used)<br>Step +Caustic?->pH? Time.hrs Temp2.C H2O2.mol kLaCO2.1/s Lg(PCO2.atm) SAcc.cm2/mol M/M0cc SOC.mo HMeO.mg Fe% Mn% Al% Description |           |              |           |                       |                               |             |        |              |                 |                                                              |                 |                                 | l)<br>Description |           |                               |  |  |
| Fe (mg/L)           | 148                                                               | 0       | 1 · ·                                                                                                                                                                       | -causic - | 0.015        | 16.1      |                       | 0.05                          | -3.4        |        | 0            |                 |                                                              | nme0.m          | g re~                           | 0                 | 0         | Maelstrom (54 sec)            |  |  |
| Fe2 (mg/L)          | 148                                                               | 0       | ☑ 1:                                                                                                                                                                        |           | 0.015        | 16.1      |                       | 0.0001                        | -3.4        |        | 0            | 1               |                                                              | 0               | 100                             |                   |           | Lime Fe(OH)2 ppt equil        |  |  |
| Estimate Fe2        | 0                                                                 | 0       | 2:                                                                                                                                                                          | 8.5       |              |           |                       | 0.0001                        | -3.4        |        |              | <u>'</u><br>  1 |                                                              | 227.7           | 97.51                           |                   |           |                               |  |  |
| Al (mg/L)           | 0.34                                                              | 0       | <b>⊘</b> 3:                                                                                                                                                                 | 9.3       | 0.110        | 18.4      |                       |                               |             |        | 0            |                 |                                                              |                 |                                 | 1.95              | 0.53      | Lime+Solids Fe(OH)3 ppt       |  |  |
| Mn (mg/L)           | 3.6                                                               | 0       | <b>⊘</b> 4:                                                                                                                                                                 | 8.5       | 0.110        | 18.4      | 0                     | 0.0001                        | -3.4        |        | 0            | 1               | 0                                                            | 0               | 97.51                           | 1.95              | 0.53      | Lime pH 8.4 effl to clarifier |  |  |
| SO4 (mg/L)          | 1078                                                              | 0       | <b>⊘</b> 5:                                                                                                                                                                 | 7.5       | 14.20        | 18.9      | 0                     | 0.0000001                     | -3.4        |        | 0            | 1               | 0                                                            | 1.7             | 100                             | 0                 | 0         | Clarifier 4.43 Mgal           |  |  |
| Cl (mg/L)           | 32.8                                                              | 0       | <b>⊘</b> 6:                                                                                                                                                                 |           | 0.03         | 19.5      | 0                     | 0.0005                        | -3.4        |        | 0            | 1               | 0                                                            | 0               | 100                             | 0                 | 0         | Outflow ditch                 |  |  |
| Ca (mg/L)           | 242                                                               | 0       | 7:                                                                                                                                                                          |           | 0            | 19.5      | 0                     | 0                             | -3.4        | $\leq$ | 0            | 1               | 0                                                            | 0               | 100                             | 0                 | 0         | NULL                          |  |  |
| Mg (mg/L)           | 88.7                                                              | 0       | 8:                                                                                                                                                                          |           | 0            | 15.4      | 0                     | 0                             | -3.4        | _      | 0            | 1               | 0                                                            | 0               | 0                               | 0                 | 0         | NULL                          |  |  |
| Na (mg/L)           | 27.8                                                              | 0       | <b>⊘</b> 9:                                                                                                                                                                 |           | 0            | 15.4      | 0                     | 0                             | -3.4        | ~ [    | 0            | 1               | 0                                                            | 0               | 0                               | 0                 | 0         | NULL                          |  |  |
| K (mg/L)            | 9.15                                                              | 0       | ✓ 10                                                                                                                                                                        | ):        | 0            | 15.4      | 0                     | 0                             | -3.4        | ~ [    | 0            | 1               | 0                                                            | 0               | 0                               | 0                 | 0         | NULL                          |  |  |
| Si (mg/L)           | 18.8                                                              | 0       | ✓ 11                                                                                                                                                                        | :         | 0            | 15.4      | 0                     | 0                             | -3.4        | ~      | 0            | 1               | 0                                                            | 0               | 0                               | 0                 | 0         | NULL                          |  |  |
| NO3N (mg/L)         | 0                                                                 | 0       |                                                                                                                                                                             |           |              |           |                       |                               |             |        |              |                 |                                                              |                 |                                 |                   |           |                               |  |  |
| TDS (mg/L)          | 0                                                                 | 0       |                                                                                                                                                                             |           |              |           |                       | Gene                          | rate Kineti | cs Out | put          |                 |                                                              | Pri             | nt PHRE                         | EQC Outpu         | it Report |                               |  |  |
| DOC (mg/L as C)     | 0.1                                                               | 0       |                                                                                                                                                                             |           | Plot         | Dis. Meta | ls 🗌                  | Plot Ca, Acidity              |             | Plo    | ot Sat Index | [               | Plot PPT                                                     | Solids          |                                 |                   |           |                               |  |  |
| Humate (mg/L as C)  | 0.1                                                               | 0       |                                                                                                                                                                             |           |              |           |                       |                               |             | Tre    | eatTrainMix2 | exe create      | d by C.A. Crav                                               | votta III, U.S. | Geologic                        | al Survey.        | Version 1 | I.4.5, August 2021            |  |  |

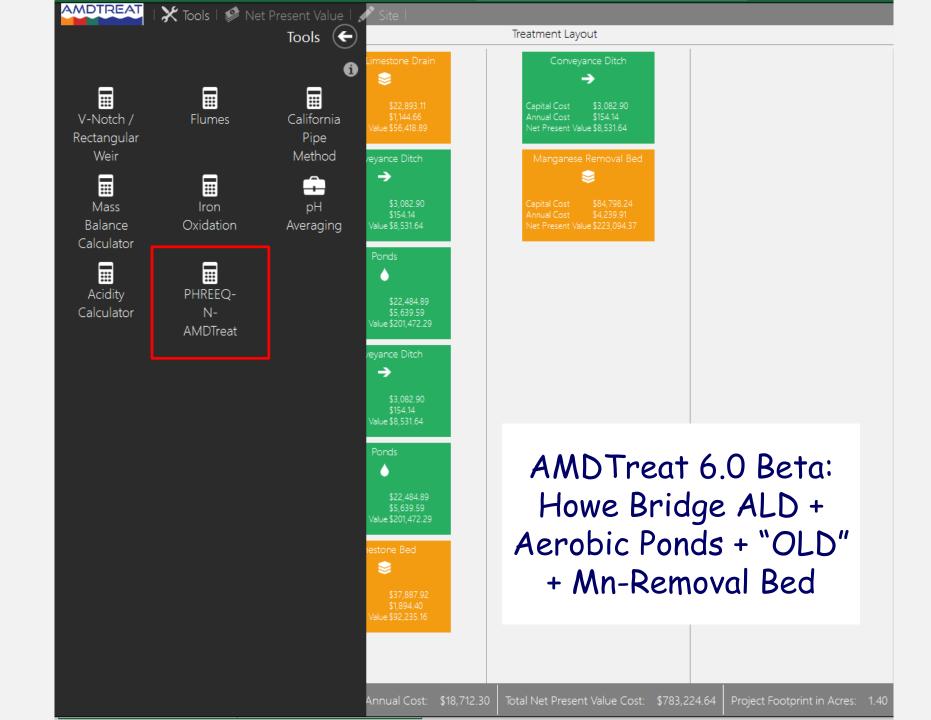
UI for active treatment of net-acidic AMD through (1) Maelstrom oxidizer; (2-4) lime dosing and sludge recirculation; (5) clarifier; and (6) outflow ditch.

#### Pre-Aeration, Lime Dosing, Solids Recirculation St. Michael AMD, Cambria County, PA



### PHREEQ-N-AMDTreat: TreatTrainMix2 Model Application


Hypothetical Passive Treatment Scenarios for Howe Bridge Mine Discharge


### "ALD" + Aerobic Ponds + "OLD" + Mn-Removal Bed

| TreatTra            | eatTrainMix2.exe: Passive treatment                                                                |        |                                        |                                                                |             |                    |                |                   |                   |                   |              |          |          | ne        | hia       | h F       | e & Mn              |
|---------------------|----------------------------------------------------------------------------------------------------|--------|----------------------------------------|----------------------------------------------------------------|-------------|--------------------|----------------|-------------------|-------------------|-------------------|--------------|----------|----------|-----------|-----------|-----------|---------------------|
| elect Workspace C:  | C:\Users\cravotta\Documents\AMDTreatValidationSimulations\HOWBRALD       Howe Bridge, high Fe & Mn |        |                                        |                                                                |             |                    |                |                   |                   |                   |              |          |          |           |           |           |                     |
|                     | Soln#A                                                                                             | Soln#B | Kinetics Constants, Adjustment Factors |                                                                |             |                    |                |                   |                   |                   |              |          |          |           |           |           |                     |
| Design flow (gpm)   | 16.1                                                                                               | 0      |                                        | factr.kCO2                                                     |             | 1                  | factr.k0       | 02                | 2.1               |                   | EXPcc        |          | 0.67     |           |           |           |                     |
| Mix fraction        | 1                                                                                                  | 0      |                                        | factr.kFeHOM                                                   |             | 1                  | factr.kf       | FeHET             | 1                 |                   | factr.kF     | eNO3     | 0.25     |           |           |           |                     |
| Temp (C)            | 11.3                                                                                               | 0.01   |                                        | factr.kFeH2O2                                                  |             | 1                  | factr.kb       | bact              | 1                 |                   | factr.kF     | ellMnOx  | 1        |           |           |           |                     |
| SC (uS/cm)          | 1270                                                                                               | 0      | _                                      | factr.kMnHOM                                                   |             | 1                  | factr.kMnHFO   |                   | 1                 |                   | factr.kMnHMO |          | 0.5      |           |           |           |                     |
| DO (mg/L)           | 1.12                                                                                               | 0.01   |                                        | factr.kSHFO                                                    |             | 1                  | factr.ks       | SOC               | 100               | )                 | factr.k[     | DOC      | 1        |           |           |           |                     |
| pН                  | 5.88                                                                                               | 0      |                                        | SI_Fe(OH)3                                                     |             | 0.0 ~              | SI_AI(OH)3     |                   | 0.0               | ~                 |              |          | 0.3 ~    |           |           |           |                     |
| Acidity (mg/L)      | 180                                                                                                | 0      |                                        | SI_Schwertma                                                   | innite      | 1.0 ~              | SI_Bas         | aluminite         | 1.0               | ~                 | SI_FeC       | O3,MnCO3 | 2.5      | ~         |           |           |                     |
| Estimate NetAcidity | 210.5                                                                                              | 0      |                                        |                                                                |             |                    | -              |                   |                   |                   |              |          |          |           |           |           |                     |
| Alk (mg/L)          | 60                                                                                                 | 0      |                                        | <ul> <li>If adding caustic</li> <li>+Caustic checkb</li> </ul> |             |                    |                | nt, ac            | tivate releva     | nt                |              | 🗹 Estima |          | mol/L 0.0 |           | ]         |                     |
| TIC (mg/L as C)     | 32.4                                                                                               | 0      |                                        | a(OH)2 ONa2CO3 ONaOH 20 vt% sc                                 |             |                    |                |                   |                   |                   | 9.89E-05     |          | 9.36E-05 |           |           |           |                     |
| 🗹 Estimate TIC      | 58.8                                                                                               | 0      | Step +Caustic?-                        | mol M/M0c                                                      | c SOC.mo    | H2O2 wt%<br>HMeO.m |                | /gal (memo<br>Mn% | , not used<br>Al% | d)<br>Description |              |          |          |           |           |           |                     |
| Fe (mg/L)           | 128                                                                                                | 1E-08  | · ·                                    | 21.7                                                           | 9.8         | 0                  |                | -3.4              |                   | 72                |              | 0        | 19.8     | 19 Pe %   | 16.0      | 0         | ALD Howe Bridge 300 |
| Fe2 (mg/L)          | 129                                                                                                | 0      |                                        | 0.05                                                           | 12          |                    | 0.01           | -3.4              | ~                 | 45                | 1            |          | 0        | 100       |           |           | Aeration cascade    |
| Estimate Fe2        | 128                                                                                                | 0      | 2:                                     |                                                                |             |                    |                | -3.4              | _                 |                   | ]['          |          | -        |           |           |           |                     |
| Al (mg/L)           | 0.067                                                                                              | 1E-08  | 3:                                     | 20.0                                                           | 12          | 0                  | 0.00001        |                   |                   | 0                 |              |          | 0        | 100       |           |           | Aerobic pond        |
| Mn (mg/L)           | 22.3                                                                                               | 1E-08  | ☑ 4: □                                 | 0.05                                                           | 12          | 0                  | 0.01           | -3.4              |                   | 45                |              | 0        | 0        | 100       | 0         | 0         | Aeration cascade    |
| SO4 (mg/L)          | 684                                                                                                | 1E-06  | 5:                                     | 40.0                                                           | 12          | 0                  | 0.0000001      | -3.4              |                   | 45                |              | 0        | 20       | 84.0      | 16.0      | 0         | Limestone bed       |
| Cl (mg/L)           | 4.9                                                                                                | 0      | <b>6</b> :                             | 0.05                                                           | 12          | 0                  | 0.005          | -3.4              | ~                 | 45                | 1            | 0        | 0        | 100       | 0         | 0         | Aeration cascade    |
| Ca (mg/L)           | 101                                                                                                | 1E-06  | 7:                                     | 8.0                                                            | 12          | 0                  | 0.00001        | -3.4              | ~                 | 0                 | 1            | 0        | 0        | 100       | 0         | 0         | Aerobic pond        |
| Mg (mg/L)           | 63                                                                                                 | 1E-06  | 8:                                     | 0.05                                                           | 12          | 0                  | 0.01           | -3.4              | ~                 | 45                | 1            | 0        | 0        | 100       | 0         | 0         | Aeration cascade    |
| Na (mg/L)           | 12.2                                                                                               | 1E-06  | 9:                                     | 5.0                                                            | 12          | 0                  | 0.0000001      | -3.4              | ~                 | 144               | 1            | 0        | 50       | 0         | 100       | 0         | Mn removal bed      |
| K (mg/L)            | 5.24                                                                                               | 0      | ✓ 10:                                  | 5.0                                                            | 12          | 0                  | 0.0000001      | -3.4              | $\sim$            | 144               | 1            | 0        | 50       | 0         | 100       | 0         | Mn removal bed      |
| Si (mg/L)           | 7.05                                                                                               | 0      | ✓ 11:                                  | 5.0                                                            | 12          | 0                  | 0.0000001      | -3.4              | $\sim$            | 144               | 1            | 0        | 50       | 0         | 100       | 0         | Mn removal bed      |
| NO3N (mg/L)         | 0                                                                                                  | 0      |                                        |                                                                |             |                    |                |                   |                   |                   |              |          |          |           |           |           |                     |
| TDS (mg/L)          | 1150                                                                                               | 0      |                                        |                                                                |             |                    | Gener          | rate Kineti       | cs Oi             | utput             |              |          | Pr       | int PHRE  | EQC Outpu | rt Report |                     |
| DOC (mg/L as C)     | 0                                                                                                  | 0      |                                        | Plot                                                           | Dis. Metals | s 🗌 Pl             | ot Ca, Acidity |                   | P                 | lot Sat Index     |              | Plot PPT | Solids   |           |           |           |                     |
| Humate (mg/Las C)   | 0                                                                                                  | 0      |                                        |                                                                |             |                    |                |                   | -                 |                   |              |          |          | Carles    | 10        |           | 4.5 August 2021     |

UI for passive treatment of net-acidic AMD through (1) anoxic limestone drain; with added steps for (3) aerobic pond; (5) oxic limestone bed; (7) aerobic pond; and (9,11) managenesis removal bed with intermediate ceretion steps (2, 4, 6, 8)

#### Howe Bridge ALD, only (210608)





#### "ALD" + Aerobic Ponds + "OLD" + Mn-Removal Bed

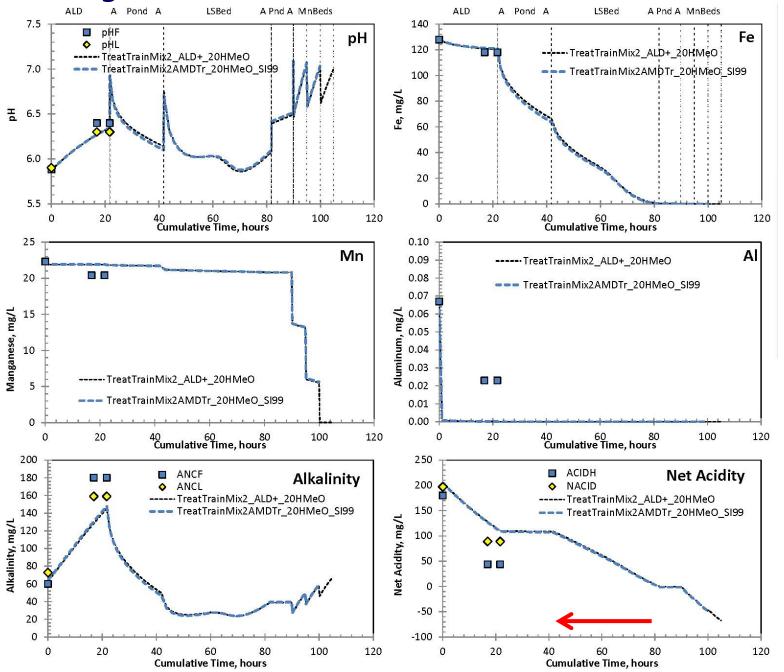
#### AMDTreat 6.0 Beta PHREEQ-N-AMDTreat tool:

#### Howe Bridge, high Fe & Mn

#### 📱 🏽 PHREEQ-N-AMDTreat | 🖍 Model Input | 🕕 Errors |

- -

Treatment Modules To Be Modeled


| Treatment Module   | Step    | Treatment<br>Layer/<br>Technology | Treatment pH<br>(s.u.) | Retention<br>Time (hrs) | Temperature<br>(°C) | Decarbonation<br>Rate: kLaCO <sub>2</sub><br>(sec <sup>-1</sup> ) | Limestone<br>Surface Area<br>(cm²/mol) | Fraction of<br>Limestone<br>Available To<br>React | Solid Organic<br>Carbon | Sorbent Mass<br>(Fe+Mn+Al)<br>(mg/L) | Fe %      | Mn %      | <b>AI</b> % |
|--------------------|---------|-----------------------------------|------------------------|-------------------------|---------------------|-------------------------------------------------------------------|----------------------------------------|---------------------------------------------------|-------------------------|--------------------------------------|-----------|-----------|-------------|
| ~                  |         |                                   |                        |                         |                     |                                                                   |                                        |                                                   |                         |                                      |           |           |             |
| ALD 🗸              | 1       |                                   | 6.88 🕂 —               | 21.700(+-               | 9.80 + -            | 0.0000001 + -                                                     | AASHTO #3 (72)∽                        | 1.00 + -                                          | 0.00 + -                | 19.80 +                              | 84.0C + - | 16.0C + — | 0.00 + -    |
| Conveyance Ditch 🗸 | 2       |                                   | 6.88 🕂 —               | 0.0500 + -              | 12.00 + -           | 0.0100000 + -                                                     | AASHTO #1 (45)∽                        | 1.00 + -                                          | 0.00 + -                | 0.00 + -                             | 100.C + - | 0.00 + -  | 0.00 + -    |
| Ponds 🗸            | 3       | Water Layer                       | 6.88 + -               | 20.000( +               | 12.00 +             | 0.0000100 + -                                                     | 0 ~                                    | 1.00 + -                                          | 0.00 + -                | 10.00 + -                            | 100.0 +   | 0.00 + -  | 0.00 + -    |
| Conveyance Ditch 🗸 | 4       | Water Layer                       | 6.88 + -               | 0.0500 + -              | 12.00 +             | 0.0100000 + -                                                     | AASHTO #1 (45)∽                        | 1.00 + -                                          | 0.00 + -                | 0.00 + -                             | 100.0 + - | 0.00 + -  | 0.00 + -    |
|                    | 5       | Water Layer                       | 6.88 + -               | 0.0000 + -              | 12.00 +             | 0.0000100 + -                                                     | 0 ~                                    | 1.00 + -                                          | 0.00 + -                | 0.00 + -                             | 100.0 +   | 0.00 + -  | 0.00 + -    |
| Limestone Bed 🛛 🗸  | 6       | Limestone Layer                   | 6.88 + -               | 40.000( +               | 12.00 +             | 0.0000001 + -                                                     | AASHTO #1 (45)₩                        | 1.00 + -                                          | 0.00 + -                | 20.00 + -                            | 84.00 +   | 16.0C + — | 0.00 + -    |
| Conveyance Ditch 🗸 | 7       | Water Layer                       | 6.88 + -               | 0.0500 + -              | 12.00 +             | 0.0050000 + -                                                     | AASHTO #1 (45)∽                        | 1.00 + -                                          | 0.00 + -                | 0.00 + -                             | 100.0 +   | 0.00 + -  | 0.00 + -    |
| Ponds 🗸            | 8       | Water Layer                       | 6.88 + -               | 8.0000 + -              | 12.00 +             | 0.0000100 + -                                                     | 0 ~                                    | 1.00 + -                                          | 0.00 + -                | 0.00 + -                             | 100.0 +   | 0.00 + -  | 0.00 + -    |
| Conveyance Ditch 🗸 | 9       | Water Layer                       | 6.88 + -               | 0.0500 + -              | 12.00 +             | 0.0100000 + -                                                     | AASHTO #1 (45)₩                        | 1.00 + -                                          | 0.00 + -                | 0.00 + -                             | 100.0 + - | 0.00 + -  | 0.00 + -    |
| Mn Removal Bed 🗸   | 10      | Limestone Layer                   | 6.88 + -               | 5.0000 +                | 12.00 +             | 0.0000001 + -                                                     | \ASHTO #5 (144∨                        | 1.00 + -                                          | 0.00 + -                | 50.00 + -                            | 0.00 + -  | 100.0 + - | 0.00 + -    |
| Mn Removal Bed 🗸   | 11      | Limestone Layer                   | 6.88 + -               | 5.0000 +                | 12.00 +             | 0.0000001 + -                                                     | \ASHTO #5 (144∨                        | 1.00 + -                                          | 0.00 + -                | 50.00 + -                            | 0.00 + -  | 100.0 +   | 0.00 + -    |
|                    | Total R | letention Time (hrs)              | 3                      | 99.9                    |                     |                                                                   |                                        |                                                   |                         |                                      |           |           |             |
| •                  |         |                                   |                        |                         |                     |                                                                   |                                        |                                                   |                         |                                      |           |           |             |
| Model Outpu        | ut      |                                   |                        |                         |                     |                                                                   |                                        |                                                   |                         |                                      |           |           |             |
|                    | _       |                                   |                        |                         |                     |                                                                   |                                        |                                                   |                         |                                      |           |           |             |


Print PHREEQC Output Report

Select Workspace C:\Users\cravotta\Documents\AMDTreat\_geochem\_data\AMDTreatBeta\HoweBrid

AMDTreat 6.0 Beta "PHREEQ-N-AMDTreat" tool (1) anoxic limestone drain; (3) aerobic pond; (5) oxic limestone bed; (7) aerobic pond; and (9-11) manganese removal bed with intermediate aeration steps (2, 4, 6, 8).

#### Howe Bridge ALD + Aerobic Ponds + OLD + Mn-Removal Bed





# Conclusions

- PHREEQ-N-AMDTreat tools that include equilibrium and kinetics models are useful to evaluate AMD treatment performance and design.
- Graphical and tabular output indicates the pH and solute concentrations in effluent plus quantity of precipitated solids.
- By adjusting kinetic variables or chemical dosing, various passive and/or active treatment strategies can be simulated.
- AMDTreat cost-analysis software can be used to evaluate the feasibility for installation and operation of treatments that produce the desired effluent quality.

# Disclaimer / Release Status

"Although this software program has been used by the U.S. Geological Survey (USGS), no warranty, expressed or implied, is made by the USGS or the U.S. Government as to the accuracy and functioning of the program and related program material nor shall the fact of distribution constitute any such warranty, and no responsibility is assumed by the USGS in connection therewith."

- ✓ FY2017-2020 Development, beta testing and review.
- FY2021 USGS software release, available for download: <u>https://doi.org/10.5066/P9QEE3D5</u>
- FY2021 Documentation, open-access Applied Geochemistry article: <u>https://doi.org/10.1016/j.apgeochem.2020.104845</u>
- FY2022 Incorporation with AMDTreat 6.0 for release by OSMRE: <u>https://www.osmre.gov/programs/reclaiming-abandoned-mine-lands/amdtreat</u>

### References

AMDTreat 6.0 Beta (2022) https://www.osmre.gov/programs/reclaiming-abandoned-mine-lands/amdtreat

- Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution (2nd). Balkema, Leiden, 678 p.
- Cravotta, C.A. III (2020) Interactive PHREEQ-N-AMDTreat water-quality modeling tools to evaluate performance and design of treatment systems for acid mine drainage (software download). U.S. Geological Survey Software Release. https://doi.org/10.5066/P9QEE3D5
- Cravotta CA III (2021) Interactive PHREEQ-N-AMDTreat water-quality models to evaluate performance and design of treatment systems for acid mine drainage. Appl. Geochem. 126, 104845. https://doi.org/10.1016/j.apgeochem.2020.104845
- Cravotta CA III, Ward SJ, Hammarstrom JM (2008) Downflow limestone beds for treatment of net-acidic, oxic, iron-laden drainage from a flooded anthracite mine, Pennsylvania, USA--Laboratory evaluation. Mine Water Environ. 27, 86-99.
- Cravotta CA III (2015) Monitoring, field experiments, and geochemical modeling of Fe(II) oxidation kinetics in a stream dominated by net-alkaline coal-mine drainage, Pennsylvania, U.S.A. Appl. Geochem. 62, 96-107.
- Cravotta CA III, Means B, Arthur W, McKenzie R, Parkhurst DL (2015) AMDTreat 5.0+ with PHREEQC titration module to compute caustic chemical quantity, effluent quality, and sludge volume. Mine Water Environ. 34, 136-152.
- Davies SR, Morgan JJ (1989) Manganese(II) oxidation kinetics on metal oxide surfaces. J. Colloid Interface Sci. 129, 63-77.
- Davison W, Seed G (1983) The kinetics of the oxidation of ferrous iron in synthetic and natural waters. Geochim. Cosmochim. Acta47, 67-79.
- Dempsey BA, Roscoe HC, Ames R, Hedin R, Byong-Hun J (2001) Ferrous oxidation chemistry in passive abiotic systems for the treatment of mine drainage. Geochem. Explor. Environ. Anal. 1, 81-88.
- dos Santos Alfonso M, Stumm W (1992) Reductive dissolution of iron(III) (hydr)oxides by hydrogen sulfide. Langmuir 8, 1671-1675.
- Dzombak DA, Morel FMM (1990) Surface complexation modeling: Hydrous ferric oxide. John Wiley and Sons, New York, NY, USA.
- Eckert P, Appelo CAJ (2002) Hydrogeochemical modeling of enhanced benzene, toluene, ethylbenzene, xylene (BTEX) remediation with nitrate. Wat. Resour. Res. 38, 1130, 5.1-5.11.
- Eggerichs T, Opel O, Otte T, Ruck W (2014) Interdependencies between biotic and abiotic ferrous iron oxidation and influence of pH, oxygen and ferric iron deposits. Geomicrobiol. 31, 461-472.
- Geroni JN, Cravotta CA III, Sapsford DJ (2012) Evolution of the chemistry of Fe bearing waters during CO<sub>2</sub> degassing. Appl. Geochem. 27, 2335-2347.
- Kirby CS, Thomas HM, Southam G, Donald R (1999) Relative contributions of abiotic and biological factors in Fe(II) oxidation in mine drainage. Appl. Geochem. 14, 511-530.
- Kirby CS, Dennis A, Kahler A (2009) Aeration to degas CO<sub>2</sub>, increase pH, and increase iron oxidation rates for efficient treatment of net alkaline mine drainage. Appl. Geochem. 24, 1175-1184.
- Millero FJ, Sotolongo S (1989) The oxidation of Fe(II) with H<sub>2</sub>O<sub>2</sub> in seawater. Geochim. Cosmochim. Acta53, 1867-1873.
- Morgan JJ (2005) Kinetics of reaction between O2 and Mn(II) species in aqueous solutions. Geochim. Cosmochim. Acta 69, 35-48.
- Parkhurst DL, Appelo CAJ (2013) Description of input and examples for PHREEQC version 3—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. USGS Techniques Methods 6-A43, 497 p.
- Peiffer S, dos Santos Afonso M, Wehrli B, Gachter R (1992) Kinetics and mechanism of the reaction of H<sub>2</sub>S with lepidocrocite. Environ. Sci. Technol. 26, 2408-2412.
- Peiffer S (2016) Reaction time scales for sulphate reduction in sediments of acidic pit lakes and its relation to in-lake acidity neutralization. Appl. Geochem. 73, 8-12.
- Pesic B, Oliver DJ, Wichlacz P (1989) An electrochemical method of measuring the oxidation rate of ferrous to ferric iron with oxygen in the presence of *Thiobacillus ferrooxidans*. Biotechnol. Bioeng. 33, 428-439.
- Plummer LN, Wigley ML, Parkhurst DL (1978) The kinetics of calcite dissolution in CO2-water systems at 5° to 60°C and 0.0 to 1.0 atm CO2. Am. J. Sci. 278, 179-216.
- Poulton SW (2003) Sulfide oxidation and iron dissolution kinetics during the reaction of dissolved sulfide with ferrihydrite. Chem. Geol. 202, 79-94.
- Rathbun RE (1998) Transport, behavior, and fate of volatile organic compounds in streams: USGS Professional Paper 1589, 151 p.
- Singer PC, Stumm W (1970) Acidic mine drainage: the rate-determining step. Science 167, 121-123
- Stumm W, Lee G.F. (1961) Oxygenation of ferrous iron. Industrial and Engineering Chemistry 53, 143-146.
- Stumm W, Morgan JJ (1996) Aquatic chemistry--chemical equilibria and rates in natural waters (3rd): New York, Wiley-Interscience, 1022 p.
- Tamura H, Goto K, Nagayama M (1976) The effect of ferric hydroxide on the oxygenation of ferrous iron in neutral solutions. Corrosion Science 16, 197-207.
- Tonkin JW, Balistrieri LS, Murray JW (2004) Modeling sorption of divalent metal cations on hydrous manganese oxide using the diffuse double layer model. Appl. Geochem. 19, 29-
  - 53.