Flocculation and Coagulation

A Practical Guide

Mining and Mineral Processing

for

Presentation Outline

Polymer Chemistry - tools

- Coagulation and Flocculation Basics
- Factors affecting Polymer performance
- Flocculant solution Preparation
- What's new in Solids Liquid separation

Polymer Chemistry

- Description... Poly + Mer MANY UNITS
- **Types...**
 - Coagulants (cationic, anionic)
 - Flocculants (non-ionic, anionic, cationic)
 - natural polymers (starch, lignins...)
- □ Characteristics...
 - Low, Medium or High Molecular Weight
 - Low, Medium or High Charge Density

Coagulant & Flocculant Characteristics

CHARACTERISTIC	COAGULANT	FLOCCULANT
Molecular Weight	Low (,000's)	Very High (millions)
Charge Type	Cationic (+) Anionic (-)	Cationic (+) Anionic (-) Nonionic (o)
Charge Density	High	Low Medium High Very High

Flocculants in Mineral Processing

The majority of Flocculants used in mineral processing have molecular weight ~20 million are combinations of

 $(Acrylamide)_n$ and $(Sodium Acrylate)_z$

Coagulation

□ Coagulation-Theory

- Is particle destabilization by a reduction of the charges tending to keep the particles apart.

□ Coagulation is a 3 part process

- 1. Rapid mixing of the coagulant with the raw water (dispersion)
- 2. Neutralization of particle surface charges
- 3. Collision between neutralized particles caused by the input of rapid mix energy

Coagulation - Theory

Coagulation (charge neutralization)

Coagulation - The Process

Flocculation

□ **Flocculation**

- The "physical" bridging of particles through the use of a polymeric flocculant
- The agglomerated particles because of their size and density sink causing solid/liquid separation.
- (Stokes Law V= $2gr^2(d_1-d_2)/9n$)

Flocculation - mechanism

Coagulation & Flocculation

Coagulation and Flocculation

Factors Affecting Flocculant Performance

□ Particle Size (fine particles, high surface area and high floc demand)

- Solids Concentration (too high solids conc. can hinder settling performance)
- □ Water Chemistry (pH, iron, hardness)
- I Mineralogy (surface chemistry)
- □ Flocculant Type (mining typically low anionic)
- Image: Method of Addition (coag high shear, floc low shear +
 dilution + short contact))

Water pH - Coagulant

Required Coagulant Dosage

Flocculant Injection

THE 3 D'S OF DOSING:

- DILUTION
- DOSE POINT/S
- **DISTRIBUTION** (mixing)

Visual Demonstration

Questions?

Comments

