

Coal fields are spread across the United States

In Appalachian Region, population is decreasing

In Appalachian Region, population is decreasing

perceived increased costs of water and wastewater service in shrinking US cities: A latent class approach. Journal of Water Resources Planning and Management, 144(7), 04018033.

Wastewater Treatment Plants (WWTPs) in areas of population decline are close to Acid Mine Drainage

Wastewater Treatment Plants (WWTPs) in areas of population decline are close to Acid Mine Drainage

Hypothesis: AMD could be treated in existing wastewater treatment systems

 PO_4^{3-} precipitation with iron and aluminum by
mineral formation or adsorption to metal oxides: $Fe^{3+} + PO_4^{3-} \rightarrow FePO_{4(s)}$ $Fe(OH)_{3(s)} \bullet PO_4$ $AI^{3+} + PO_4^{3-} \rightarrow AIPO_{4(s)}$ $AI(OH)_{3(s)} \bullet PO_4$

How will adding AMD to a wastewater treatment system impact its performance?

The project involves analyzing the impacts of adding AMD to two locations within the treatment system

AMD discharges were mixed with WW from the SFU WWTP in 10% and 40% AMD to WW ratios

WW+AMD Solutions were mixed for 2 minutes and settled for 2 hours

After two hours, the supernatant from each reactor was analyzed for:

- pH
- metals concentrations
- phosphate concentrations

BOD removal rates were determined using HACH BOD Trak II respirometers

$$BOD_t = UBOD * (1 - e^{-kt})$$
 where,

BOD_t = BOD at time t (mg/L) UBOD = Ultimate BOD (mg/L) k = first-order reaction rate (day⁻¹) t = time (day)

Three AMD sites with varying iron and aluminum concentrations were considered:

Constituent	Average ± Standard Deviation
рН	3.22 ± 0.05
Iron (mg/L)	8.67 ± <i>7.04</i>
Aluminum (mg/L)	13.8 ± <i>1.01</i>
Calcium (mg/L)	69.0 ± 7.62

Constituent	Average ± Standard Deviation
рН	4.42 ± 0.31
Iron (mg/L)	60.6 ± <i>4.65</i>
Aluminum (mg/L)	0.43 ± <i>0.11</i>
Calcium (mg/L)	25.3 ± 0.91

Constituent	Average ± Standard Deviation
рН	4.01 ± <i>0.0</i> 3
Iron (mg/L)	Below Detection
Aluminum (mg/L)	3.92 ± <i>0.91</i>
Calcium (mg/L)	85.2 ± 7.49

Phosphate removal was greater than expected from mixing for all but the 10% Spaghetti Hole (SH) reactor.

BOD removal in the AMD solutions followed a similar consumption profile to the DI solutions.

pН

7.81

7.72

7.09

7.52

6.22

pН

8.45

8.44

7.75

8.40

6.98

pН

7.90

7.88

7.44

7.92

6.88

BOD removal in the AMD solutions followed a similar consumption profile to the DI solutions.

FIGURE 1.—Rate constant, k, of sample E at 20° C is shown as a function of pH.

Mukherjee et al. (1968) Effect of pH on the Rate of BOD of Wastewater. *Journal Water Pollution Control Federation*, 40(11) Sweep coagulation was observed in the 40% HB reactor, which decreased the UBOD by over 30%.

A separate experiment showed that adding AI and Fe reduces COD in wastewater

Adding AMD to a WWTP can reduce aeration requirements, but will require additional sludge disposal

Further work to determine how nutrient removal is affected by adding AMD is still required

- Determine rates of phosphate removal in primary clarifier depending on types of metals and concentrations
 - > Remove the need for complex systems designed for phosphate removal?

- Analyze the nitrifying capabilities of WW mixed with AMD.
 - Nitrifying bacteria are very sensitive to pH
 - > Rates of ammonia oxidation drop-off significantly at pH < 7.2
 - May require sophisticated monitoring equipment to dose alkalinity in the influent to ensure that nitrogen removal remains consistent

pH VS Nitrification Rate at 68 °F

Thank you!

Questions?

My email: ttasker@francis.edu

Special thanks to all the SFU undergraduate students who also assisted with lab experiments : Vittoria Larosa, Matt Berzonsky, Nicole Himes, Henry Warner

