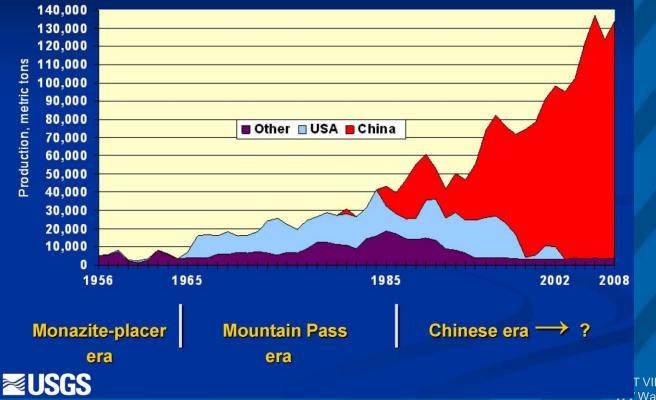
Current Project: Integrated Acid Mine Drainage treatment and REE/CM extraction plant USDOE Project DE FE00 31834

Project Leadership:

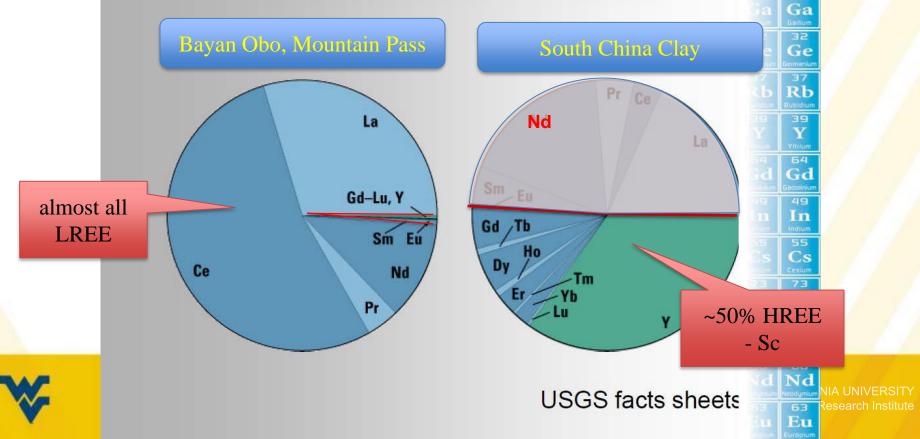
West Virginia University

Paul Ziemkiewicz, Jim Constant, Harry Finklea, Lance Lin, David Hoffman, John Quaranta

Virginia Tech Aaron Noble


State: WVDEP-Office of Special Reclamation

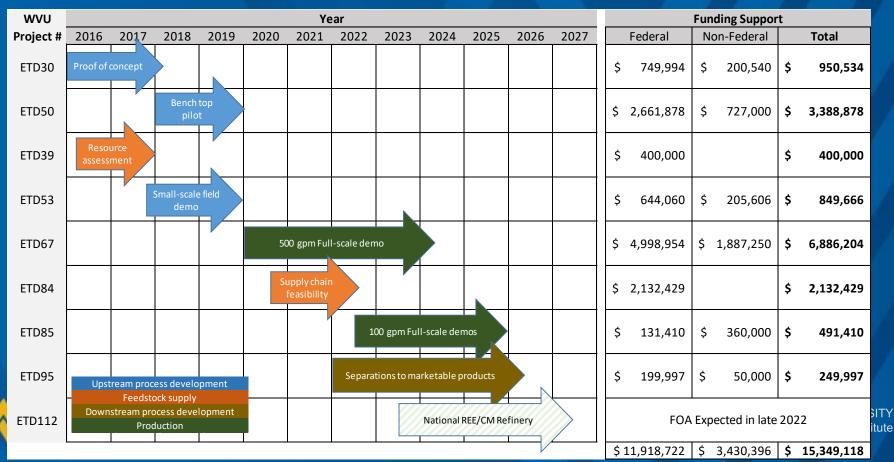
Industry: Rockwell Automation TenCate Corporation L3 Eng



Our strategic disadvantage: China controls exports ~ 35kt/yr

T VIRGINIA UNIVERSITY

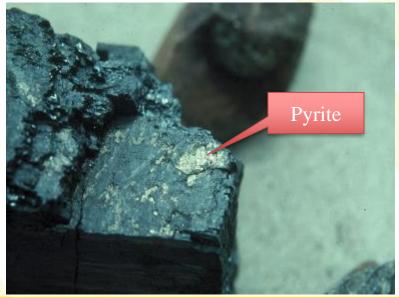
Distribution of HREE in AMD sludge is similar to south China clays


Projected REE demand through 2025 (tons/year)

	Global demand	l	USA demand		
	@ 7% ann. Growth		total*	defense**	
2017	158,403		15,840	792	
2018	169,845		16,984	849	
2019	182,176		18,218	911	
2020	195,469		19,547	977	
2021	209,804		20,980	1,049	
2022	225,265		22,527	1,126	
2023	241,947		24,195	1,210	
2024	259,951		25,995	1,300	
2025	279,387		27,939	1,397	
			* 10% global		
			** 5% USA demand		

This assumes that USA manufacturing demand does not increase beyond current rates

Water Research Institute: Recovering REE/CM from Acid Mine Drainage Technology Development Strategy

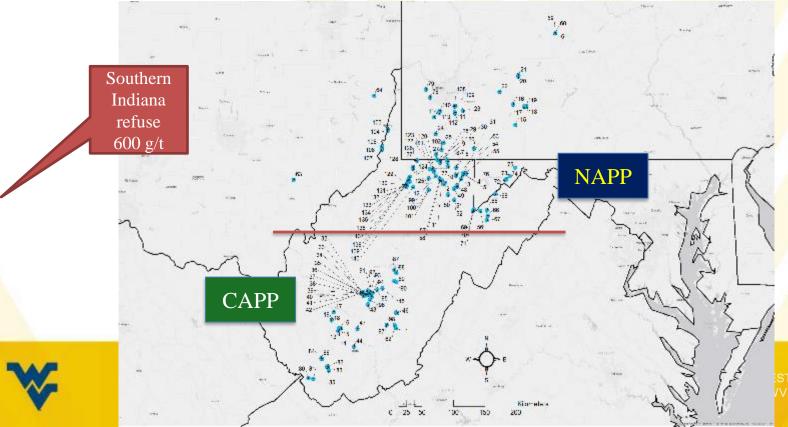


Acid Mine Drainage: AMD

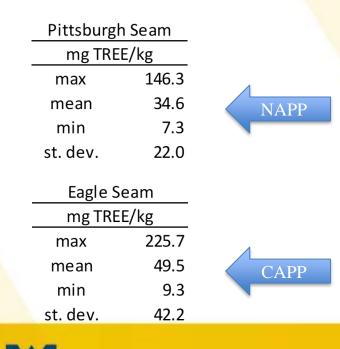
1. H_2SO_4 leaches REE from shale

2. REE precipitate with Fe(OH)₃

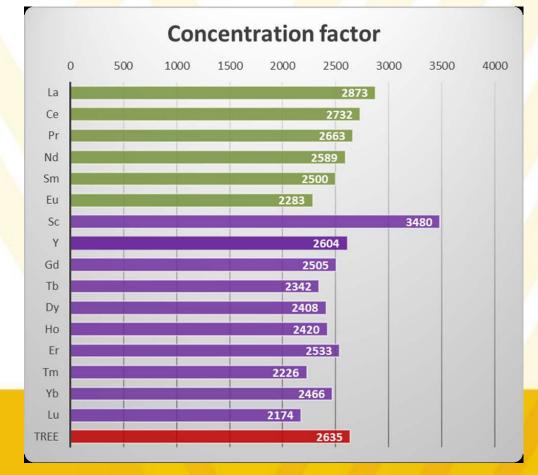
$Pyrite + O_2 + H_2O = Fe^{2+} + H_2SO_4$

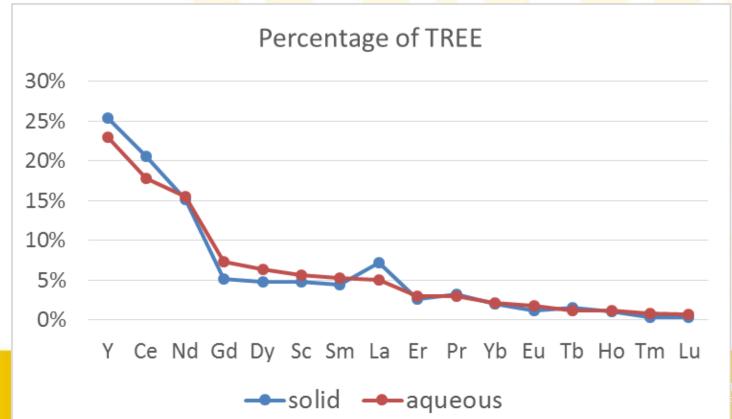


 $Fe^{2+} + O_2 + OH^- = Fe(OH)_3$



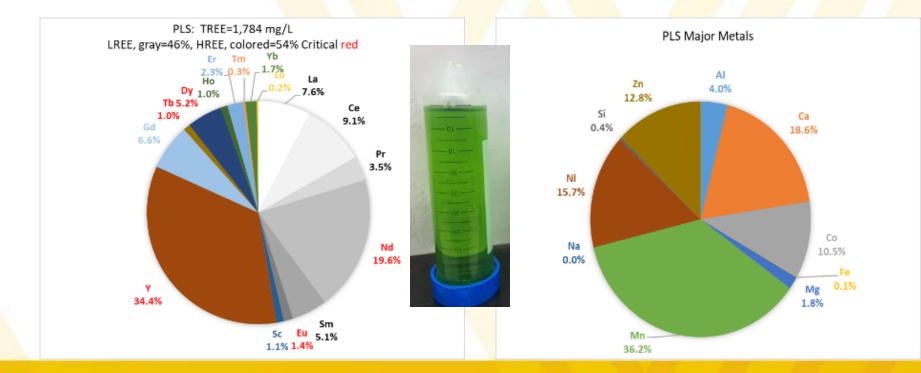
¥


140 SAMPLED LOCATIONS: MD, OH, PA, WV


REE in NAPP vs. CAPP whole coal. Physical separation can increase REE concentrations to about 500-600 g/t

AMD treatment concentrates REE in sludge to about 700 g/t

All REEs precipitate to AMD sludge nearly equally


NIA UNIVERSITY Research Institute

- 1. Generate pre-concentrate (brown floc)
- 2. GeoTubes passively dewater to 40-85% solids
- 3. Transport to a central processing facility
- 4. Convert it to high-grade PLS (green), then MREO
- 5. Elemental oxide, reduction to metal

Recent PLS production: 1,784 mg TREE/L, 54% HREE almost no Al, Si

Project ETD67: Mt. Storm Pilot Plant AMD treatment: Up to 1,000 gpm, Production rate ~ 1 tpy each: REE, Cobalt, Nickel Much more: Manganese, Lithium, Zinc

Integrated AMD treatment/REE/CM recovery Consistent feedstock: average of 140 sites Conventional AMD treatment **REE/CM** Recovery and refining APPALACHIAN COAL AMD *PC = preconcentrate 45% Heavy REO avg 462 ug/L Dy 0.9% 2.4% m La 7.9% e 0.9% clarifier B mixerA Gd clarifier C mixerB 5.8% clarifier A Ce 22.3% $\underline{PC} \sim \$150/t$ Y ALSX 25.8% Pr 3.0% REE/CM >80% Nd 15.9% Sc___Eu Sm 2.2% 1.1% 4.3%

A34 components

Inside the Lime Silo

Three clarifiers

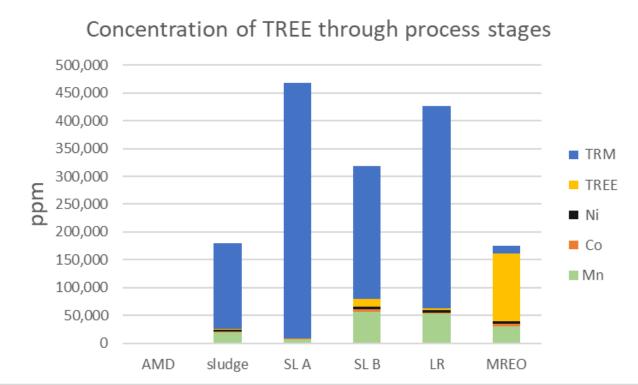
Downstream Processing

Solvent Extraction

Raffinate Storage

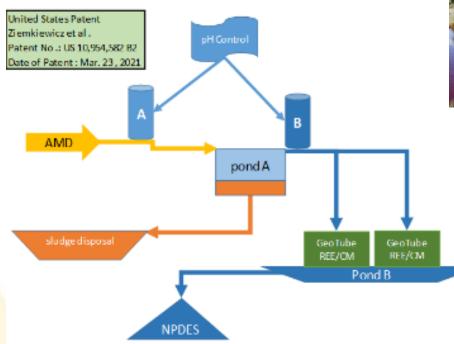
¥

First Batch of Preconcentrate leaving A34 28 Sept 2022


¥

Our process increases the REE/CM grade from AMD to Product

	AMD	SLpond	SL A	SL B	LR	MREO	
	Concentration (ppm)						
Mn	24	19,236	7,879	56,834	53,327	30,314	
Со	1	1,957	92	4,825	2,406	4,227	
Ni	1	2,196	200	4,782	3,306	5,635	
TREE	1	2,727	352	12,941	3,964	120,678	
TRM	184	154,022	458,818	239,684	363,281	13,782	
Enrichment factors (% increase)							
Mn	1	787	322	2,325	2,182	1,240	
Со	1	2,419	114	5,964	2,975	5,225	
Ni	1	2,381	217	5,185	3,584	6,110	
TREE	1	2,343	302	11,116	3,405	103,665	
TRM	1	837	2,494	1,303	1,975	75	



Rejection of gangue Ni, Co report to other circuits for recovery

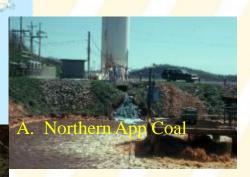
AMD Treatment with REE/CM recovery

CENTRAL REFINERY CONFIGURATION, PRODUCT LINE, AND TECHNICAL FEASIBILITY

Class 4 Feasibility Study for USDOE

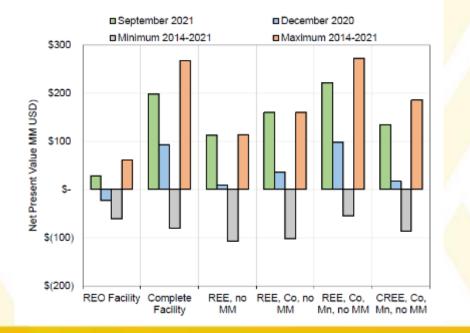
Conceptual supply chain: Concentrates move to central processing facilities

D. Iron Mt. CA

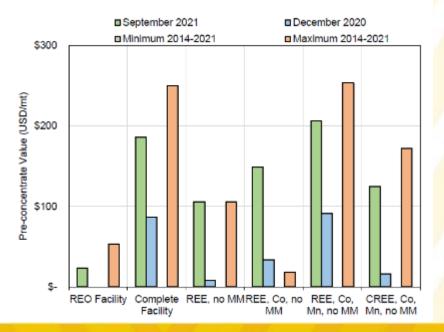

B. Southern App Coal

Potential source districts

- A: Northern/Central APP
- B: Southern APP/Illinois basin
- C: Southern Rockies metal belt
- D: Sierra metal belt
- E: Northern Rockies metal belt
- F: Minnesota iron range


Estimated REE/CM yields: USDOE requirements <u>1-3 tpd, >50% coal based</u>

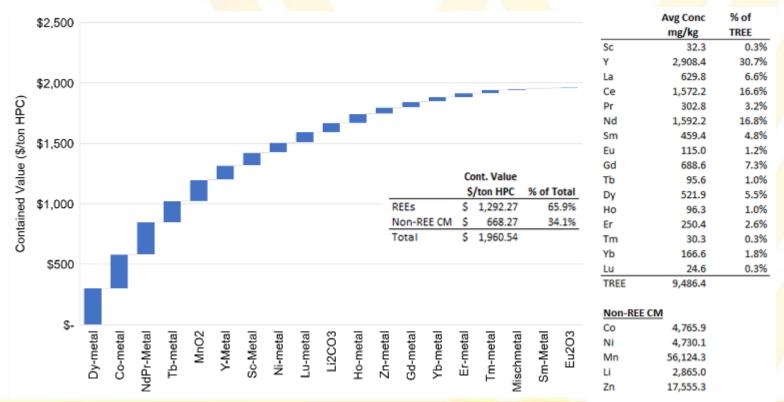
		-			Oxide		
Estimated			TREE	Co	Mn ²	REE+Co	REE+Co+Mn
Yield	n	Source	t/yr	t/yr	t/yr	t/yr	t/yr
measured	112	WVU samples 2017	17.8	20.3	180.0	38.1	218.1
measured	51	WVU samples 2021	36.0	40.0	417.9	75.9	493.8
measured	28	USGS PA ⁴	10.8	26.4	257.5	37.2	294.7
	191	Measured coal AMD	64.6	86.6	855.4	151.2	1006.6
Inferred ^{1,3}	132	TN, KY, WV, OH, PA, MD	72.4	81.6	857.3	154.0	1011.3
	323	Total Coal	137.0	168.2	1712.7	305.2	2018.0
	6	Measured Hard Rock	167.2	114.0	1644.6	281.3	1925.9
Total yield	329	Coal + Hard Rock	304.2	282.3	3357.4	586.5	3943.9
		Coal/Hard rock	0.82	1.48	1.04	1.09	1.05



Scenario Analysis Results

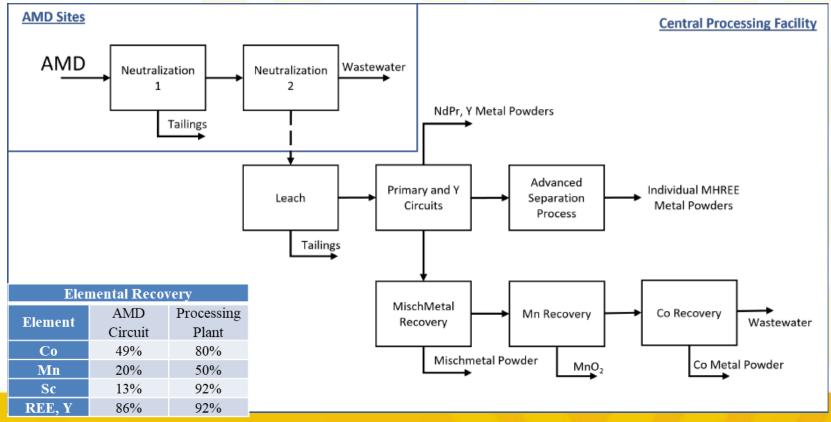
Net Present Value

PC Value at 10% ROR

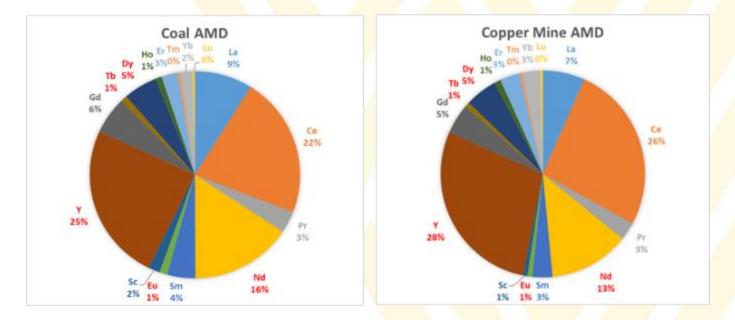


Recovery of REE+Co+Mn without mischmetal yields the most favorable economics

Parameter	REE + Co + Mn		
Parameter	no MM		
REE Production (t/y)	2 <mark>89.</mark> 8		
Total Production (t/y)	6,0 <mark>99.</mark> 80		
Net Present Value _{10%} (\$ mil)	\$ <mark>24</mark> 8.38		
Rate of Return	<mark>34</mark> .70%		
Discounted Payback Period	6.5		



Preconcentrate: Contained Value \$1,960



Process: At source recovery to metal refining

Coal and Copper mine AMD samples have nearly identical REE distributions

Disadvantages of sourcing REE/CM from AMD

- Low concentrations
- Requires collection from many sites
- Need to manage upstream supply chain
- Quality control: moisture, grade

Advantages of sourcing REE/CM from AMD

- Already permitted sites, no delays due to permitting
- Easy to quantify yield, minimal exploration cost
- Environmentally beneficial, byproduct is clean water
- Solid wastes are RCRA subtitle D, non hazardous
- Distributes jobs and benefits across broad areas
- Incentivizes treatment of legacy AMD discharges
- Uniform feedstock, across mines and sectors
- Attractive economics
- No rads

WVU Water Research Institute

REE/CM Recovery from Acid Mind Drainage: Summary of progress 2016-2022

Paul Ziemkiewicz, Director WVU Water Research Institute pziemkie@wvu.edu

