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science for a changing world

Hello. My name is Chuck Cravotta. | am a research hydrologist at the U.S. Geological Survey
Pennsylvania Water Science Center. Today, | am going to introduce new software that | developed:
“PHREEQ-N-AMDTreat+REYs” Water-Quality Modeling Tools to Evaluate Acid Mine Drainage Treatment
Strategies for Recovery of Rare-Earth Elements.

Many studies have identified elevated concentrations of rare-earth elements plus yttrium (REYs) in acid mine drainage
(AMD) and in solids formed in the treatment of these waters. Routine treatment methods plus additional steps may be
applicable for the efficient recovery of REYs, depending on the AMD composition, volume, location, and economic
considerations. The PHREEQ-N-AMDTreat+REYs geochemical modeling tools have the fundamental capability to simulate
and predict key reactions during the routine treatment of AMD and the formation of treatment solids, including the
precipitation of REYs compounds and the adsorption of REYs onto hydrous Fe, Al, and Mn oxides. The new tools were
expanded from the PHREEQ-N-AMDTreat tools to include trace-element attenuation. Additions include a caustic titration
model that indicates equilibrium surface and aqueous speciation of REYs as functions of pH and caustic agents, and a
sequential kinetics+adsorption model that simulates progressive changes in pH, major ions, and REYs in water and solids
during passive and/or active treatment. A goal of such modeling is to identify strategies that could produce a
concentrated REYs extract from AMD or mine waste leachate that could be highly valuable. For example, if REYs could be
concentrated after first removing substantial Fe and Al, the final REYs-bearing phase(s) could be more efficiently
processed for REYs recovery and, therefore, may represent a more valuable commodity. Preliminary modeling supports
the hypothesis that Fe and Al can be removed at pH >5.5 using conventional sequential oxidation and neutralization
treatment processes without removing REYs, and that further increasing pH can promote the adsorption of REYs by
hydrous Mn oxides. Alternatively, chemicals such as oxalate or phosphate may be added to precipitate REYs compounds
following steps to decrease Fe and Al concentrations. Field and lab studies may be helpful to demonstrate REYs
attenuation from AMD during specific treatment steps and to corroborate, refine, and constrain modeling parameters.
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AMDTreat 6.0 (2022) is a newly updated computer application for estimating costs and
sizing of facilities to abate AMD (acidic or alkaline mine drainage) that is maintained by the

AMD Treat 6.0 Beta | Total Capital Cost:  $2,225,164.14 | Total Annual Cost

Treatment Layout

“AMDTreat 6.0”

AMDTreat 6.0 (2022) is a
newly updated computer
application for estimating
costs and sizing of facilities to
abate AMD (acidic or alkaline
mine drainage) that is
maintained by the Office of
Surface Mining Reclamation
and Enforcement (OSMRE).

The PHREEQ-N-AMDTreat
water-quality modeling tool,
developed by the USGS with

support from OSMRE, was

recently incorporated with
AMDTreat 6.0 (beta version
shown here).

https://www.osmre.gov/programs/reclaiming-abandoned-mine-lands/amdtreat

Total Net Present Value Cost:  $15,119,649.19
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Project Footprint in Acres: 14.28

Office of Surface Mining Reclamation and Enforcement (OSMRE).

The PHREEQ-N-AMDTreat water-quality modeling tool, developed by the USGS with
support from OSMRE, was recently incorporated with the newly recoded AMDTreat 6.0

(beta version shown here).
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The embedded PHREEQ-N-AMDTreat tool and the stand-alone TreatTrainMix2 tool
reported by Cravotta (2020, 2021) simulate effects on water quality by various treatment
components, involving different technologies and retention times. The model results may
be used to optimize treatment system configuration or size and, also, for costs/benefits
analysis.

Kinetics processes such as CO2 outgassing and 02 ingassing, Fell and Mnll oxidation,
limestone dissolution, and oxidation of organic matter are simulated, all of which may
affect the pH and equilibrium speciation.

Active treatment with hydrogen peroxide and caustic chemicals also may be simulated.
The potential for formation of solids from dissolved constituents and the corresponding
mass of solids is computed, including amounts of Fe, Mn, and Al adsorbed by hydrous
metal oxides (HMeO = HFO + HMO + HAO).

A newly expanded stand-alone model includes rare-earth elements attenuation by
adsorption and precipitation.
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The elements included in the PHREEQ-N-AMDTreat+REYs models are shown here in their
respective positions on the periodic table. The lanthanide rare-earth elements plus yttrium
and scandium are referred to as “REYs”. REYs are in great demand for clean energy and
other modern technologies.



Rare-earth elements are elevated in low-pH AMD
from coal mines in Pennsylvania
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The PHREEQ-N-AMDTreat+REYs water-quality modeling tool set
emphasizes adsorption of trace elements by hydrous metal oxides

Cravotta, C.A. III (2008) Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA: 1.
Constituent concentrations and correlations: Applied Geochemistry, 23, 166-202.

The pH of coal-mine drainage in Pennsylvania has a bimodal frequency distribution.
Roughly half of the discharges have pH less than 5.5. Dissolved concentrations of rare-
earth elements and other trace metals generally decrease with increased pH, with a break
in slope at pH 5.5. Cravotta (2008) showed that trace-element minerals tend to be
undersaturated in AMD and suggested adsorption as the primary mechanism to explain the
relations among trace elements and pH.

Thus, the PHREEQ-N-AMDTreat+REYs tool set, which consists of the TreatTrainMix2REYS
and CausticTitrationMix2REYs models, emphasizes the adsorption of REYs and other trace
elements by hydrous metal oxides.



Rare-earth elements accumulate with Mn, Al, and Fe
in AMD treatment solids
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Hedin, B.C., Hedin, R.S., Capo, R.C., and Stewart, B.W., 2020. Critical metal recovery potential of Appalachian acid mine drainag
treatment solids. International Journal of Coal Geology, 231, 103610.

Rare-earth elements accumulate with manganese, aluminum, and iron that precipitate with
other major elements in AMD treatment solids. The highest rare-earth element
concentrations generally occur in solids with mixed compositions where manganese and
aluminum are abundant. Such solids are typically produced by treatment of low-pH AMD.
Solids dominated by iron can be produced by treatment of net-alkaline, near-neutral pH
AMD that has relatively low dissolved concentrations of the rare earths to begin with.



Hydrous metal oxides (HMeO) = HMO+ +HAO
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At low pH, hydrous metal oxides tend to have positively charged surfaces that adsorb
anions. As pH increases past the “zero point of charge”, the surfaces become negatively
charged and then adsorb cations.

In the PHREEQ-N-AMDTreat model, more than one compound may precipitate to form
fresh sorbent: HMO consists of oxidized and reduced manganese hydroxide; HFO consists
of oxidized and reduced iron hydroxide; and HAO consists of aluminum hydroxide and
basaluminite.

In the PHREEQ-N-AMDTreat model, more than one compound may precipitate to form
fresh sorbent: HMO consists of MNOOH (manganite) and Mn(OH)2 (pyrochroite); HFO
consists of Fe(OH)3 (ferrihydrite) and Fe(OH)2; and HAO consists of Al(OH)3 and
basaluminite.



SORPTION OF REYs ON “HMeQO”

Adsorption REYs, HMe© 0.09 g/L (HFO 0.03g HMO 0.03g HAO 0.03g)
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This slide shows an example simulation of the adsorption of REYs (10® M each) as a
function of pH, given a specified total mass of HMeO consisting of 0.03 g each of HFO,
HMO, and HAO. The area below curve indicates the fraction that is adsorbed. Except for Sc
and Ce, individual REYs have similar sorption behavior, with a majority sorbed by about pH
5.5, consistent with field observations.

Simulations were conducted using the CausticTitrationMix2REYsMoles.exe tool.
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PHREEQ-N-AMDTreat+REYs (Sorption+Precipitation
-N- t+REYs (Sorption+Precipitation)
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This slide shows the user interface (Ul) for the “CausticTitrationMix2REYs” tool. Redox and
speciation reactions are modeled as instantaneous, equilibrium processes in response to
changes in pH and sorbent availability. The model simulates the addition of a selected caustic
agent (NaOH, Ca(OH),, Ca0, Na,CO,, or CaCO;) and the consequent attenuation of REYs, Fe,
Mn, Al, and other elements by precipitation as solid compounds and by adsorption to
hydrous metal oxide (HFO, HMO, and HAO).

The hydrous metal oxide sorbent can be a combination of fresh precipitate that forms during
titration plus specified pre-existing solids. The freshly precipitated and existing sorbent can
have different surface properties.

This particular image shows input values for untreated AMD at the Nittanny mine, which
had low pH (3.0) with elevated concentrations of major and trace elements. The Nittanny
AMD was titrated in the field with NaOH to pH 6.0, 7.5, 9.0, and 10.3. Measured
concentrations of dissolved Fe, Al, Mn, and REYs decreased with increased pH.

Mg (652 mg L), Ca (422 mg L1), Al (128 mg L), Mn (129 mg L), Fe (40.7 mg L1), and REYs
(2.0 mg LY). Corresponding precipitated solids and sorbent properties were not
characterized.
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Equilibrium Speciation of REYs — Nittanny AMD Titration
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This slide shows graphs for the simulation results of the Nittanny AMD titration with NaOH,
shown as curves, compared to measured values, shown as point symbols. Measurement
errors are roughly the size of symbols.

The upper set of six graphs indicates results for default values of the specific surface area
(Asp) of the “fresh” HFO, HMO, and HAO; REYs minerals were not allowed to precipitate.
Decreases in the concentrations of Fe, Al, and Mn correspond to their precipitation as HFO,
HAO, and HMO. The REYs begin to sorb at pH ~5 and are effectively sequestered to the
freshly precipitated solids by pH 7.5. The individual graphs for La, Gd, and Lu indicate
differences in the sorption affinities for different elements. HFO was the predominant
sorbent of each of the REYs to about pH 8.5. Adsorption by HMO and HAO is indicated to
be more important for La, which is considered a light REY, compared to Gd and Lu.

The lower set of graphs shows results after increasing the specific surface area of all three
sorbents, especially that of HAO. The lower set also allows the precipitation of REYs
compounds. For this scenario, adsorption by HMO and HAO are enhanced compared to the
default simulation. Furthermore, precipitation of La and Gd as phosphate and carbonate
compounds competes with sorption.

Both simulations provide reasonable fits to the empirical data in the pH range 3 to 9, with
some improvement at high pH by the second simulation with greater surface area and REY
precipitation.

These graphs were created using the selected output file imported to Excel.
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Treatment Simulation: Pine Forest ALD+Pond+Wetlands
TreatTrainMix2REYs.exe
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The TreatTrainMix2REYs.exe tool simulates water-quality changes through sequential steps in
passive or active AMD treatment systems. Kinetics processes such as CO, outgassing, O,
ingassing, Fe'' and Mn'" oxidation, SO, reduction, and limestone dissolution, all of which affect
pH, are coupled with the same equilibrium speciation and precipitation reactions as the
CausticTitrationMix2REYs tool. Unlike the titration tool, the pH may decrease or increase in
response to dynamic, kinetically limited processes. A total of 11 treatment steps may be
considered, with each having a specified reaction time, CO, outgassing rate, availability of
limestone, organic matter, H,0,, sorbent, and other variables. A target pH may be specified
for the addition of a caustic agent (NaOH, Ca(OH),, CaO, Na,CO,, or CaCO;) to begin steps 1
to 5, possibly after aeration (decarbonation) or other pre-treatment steps. The solution
composition at the end of each step is passed to the next step.

This slide shows the Ul with input values for simulation of passive treatment of net-acidic
coal mine discharge at the Pine Forest Mine in Pennsylvania. Sequential treatment involves
an anoxic limestone drain at step 1; aeration pond at step 3; and aerobic wetlands at steps
5, 7, and 9, with aeration at intermediate and final steps (2, 4, 6, 8, 10).

For the reported simulations, retention time, CO, outgassing rate, available limestone, and
pre-existing HMeO mass and composition were varied at each step. The fractions of Fe, Al,
and Mn in the pre-existing sorbent were estimated from measured sediment composition
at the inflow and points downstream of the ALD.

HMeO mass of 75 mg L specified for the ALD represents accumulated coatings on
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limestone particles. For subsequent steps, the specified sorbent mass was only 1 to 3 mg,
representing suspended particles or coatings on rock or plant surfaces. Consistent values for
retention time, kinetics variables, and sorbent properties were used for different model
scenarios whereby the only values varied were the rate factor for iron-oxidizing bacteria
(FeOB) and/or potential for REYs solids to precipitate. For the simulated “biofouling”
scenario, the FeOB rate factor (factr.kbact) was increased from the default value of 1 to 2; for
the abiotic scenario, that factor is 0.

HMeO mass of 75 mg L specified for the ALD is consistent with a 0.22-mm thick coating on
limestone particles (72 cm? mol?) in contact with 1 L water volume, assuming 35 % bed
porosity and sorbent density of 1.92 g cm.
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PHREEQ-N-AMDTreat+REYs Sequential Model
(Kinetics plus Equilibrium Sorption+Precipitation)
Pine Forest Anoxic Limestone Drain + Aerobic Pond + Aerobic Wetlands

TreatTrainMix2REYs.exe
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*Biofouled “Anoxic” Limestone Drain

This Google Earth image from 2012 shows sampling points along flow path through the
Pine Forest passive treatment system. The first step is an underground “biofouled” anoxic
limestone drain that had gelatinous orange precipitate coating limestone particles and
clogging porosity. Water started to upwell to the surface along the length of the bed
because of accumulated solids.

A settling tank near the inflow permitted initially anoxic AMD to become partly oxygenated
before entering the buried limestone bed.

Subsequent treatment steps involve aerobic ponds and wetlands with aeration steps in
between. Total retention time in the system is approximately 30-40 hours, depending on
inflow rate.
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Treatment Simulation: Pine Forest ALD+Pond+Wetlands
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The TreatTrainMix2REYs results shown as a function of retention time generally reproduce
the longitudinal trends for measured water quality at the Pine Forest treatment system.
The pH and DO increased within the ALD and, subsequently, in response to aeration steps.
The Fe concentration decreased by 30% within the ALD, simulated to result from abiotic
plus microbial oxidation of Fe', which led to the precipitation and accumulation of HFO
with lesser quantities of HAO and HMO on limestone surfaces. Concentrations of Mn were
relatively unchanged through the ALD but decreased by about 30% within wetlands where
the pH and DO were greatest and the Mn content of accumulated sorbent was highest.
Initial concentrations of Al were very low and were simulated to decrease by adsorption to
accumulated sorbent within the ALD. Simulated attenuation of REYs also took place within
the ALD because of adsorption. Despite less mass of HMeO within wetlands downstream of
the ALD, greater Mn content of sorbent and increased pH in wetlands promoted
attenuation of dissolved Mn' and remaining REYs.

Compared to adsorption, REYs precipitation has only a small effect as indicated by the
difference between red-dashed (REY precipitation) and blue-dashed curves (no REY
precipitation), both simulating the biofouling scenario where the FeOB rate factor was
doubled. Simulation results for the two reference scenarios (orange solid or black dotted
curves) demonstrate that abiotic, homogeneous Fe' oxidation may explain observations in
aerobic ponds and wetlands, but does not explain observed Fe removal within and
immediately below the ALD. Thus, microbial and abiotic oxidation, combined with
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adsorption account for the attenuation of Fe, REYs, and associated metals within the
limestone bed. However, in downstream zones where pH and DO are greater, abiotic Fe'
oxidation is sufficient to explain observed trends.
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PHREEQ-N-AMDTreat+REYs Sequential Model
(Kinetics plus Equilibrium Sorption+Precipitation)
Silver Creek Aerobic Ponds + Aerobic Wetlands

TreatTrainMix2REYs.exe

Treatment
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NULL
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Wetland #2

The TreatTrainMix2REYs tool is also used to simulate decreasing concentrations of dissolved
metals and REYs within the Silver Creek passive treatment system. This Google Earth image
from 2012 shows sampling points along conceptual flow path through the passive
treatment system, which consists of a sedimentation pond at step 1, two large
oxidation/settling ponds at steps 3 and 5, followed by two aerobic wetlands at steps 7 and
9, with wide, shallow aeration cascades in between.

The second and third ponds account for 4/5 of the total retention time for the system,
which is approximately 250-450 hours, depending on inflow rate.

When sampled in 2015 and 2016, the Silver Creek AMD was anoxic, marginally net alkaline
with pH 5.9-6.0. Rapid outgassing of CO, during aeration steps caused large increases in pH,
which facilitated Fe' oxidation in subsequent steps.
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PHREEQ-N-AMDTreat+REYs Sequential Model

Treatment Simulation: Silver Creek Mine, Aerobic Ponds+Wetlands
TreatTrainMix2REYs.exe
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Silver Creek Mine (Aug. 2016):
moderate Fe & Mn, moderate REYs (~23 ug/L)
"validation data” for comparison to simulations

For initial simulations, HMeO composition was varied on the basis of values reported by
Ashby (2017) for sampled sediments at Silver Creek. The HMeO mass at each step was
assumed to be less than or equal to the difference between immediately upstream and
downstream samples for the combined mass of Fe, Al, and Mn. Only the CO, outgassing
rate and sorbent mass and composition (HMeO.mg, Fe%, Mn%, Al%) at each step were
adjusted to achieve a reasonable match between empirical and simulated values for
longitudinal changes in pH, Fe, Mn, Al, and associated major solute concentrations.
Eventual removal of Mn'' in the wetland treatment steps were simulated by HMeO sorbent
having greater HMO content, as observed for the sampled sediment.
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Treatment Simulation: Silver Creek Aerobic Ponds+Wetlands (160808)
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Abiotic oxidation of Fe combined with adsorption and precipitation of solids explains
observed attenuation of Fe, Al, Mn, and associated REYs at the Silver Creek treatment
system; microbial Fe oxidation had little effect (FeOB=1X). Although the results for initial
simulations effectively reproduced the longitudinal trends for measured pH, DO, Fe, Mn,
and Al (black dashed or orange curves), without REYs mineral precipitation, the
corresponding modeled concentrations of total dissolved REYs (and individual REYs, not
shown) remaining in solution were at least five times greater than observed values for all
but the last stages of the treatment system (black dashed curves). Simply permitting the
precipitation of REYs (SI_REEPO4=0) resulted in substantial decrease in the concentration
of total REYs (blue or red curves), consistent with observations. Nevertheless, simulated
attenuation was not consistently effective for individual REYs, many of which remained
undersaturated (e.g. Y, Eu, Gd, Tb, Dy, Ho, Yb, and Lu). As explained by Liu and Byrne
(1997), formation of REEPO, in the environment generally involves co-precipitation of

phases which incorporate multiple REYs, in which case the overall trend may be expected.
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PHREEQ-N-AMDTreat+REYs Sequential Model
Simulated Treatment of Leachate for Recovery of REYs
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A goal of modeling with the PHREEQ-N-AMDTreat+REYs tools is to identify strategies that
could feasibly produce a concentrated REYs extract from AMD or mine waste leachate that
could be highly valuable.

For example, leachate from pyritic shale and coal waste (coal refuse) at a centralized
processing facility has low pH and elevated concentrations of metals. The acidic, metal-
laden leachate is a long-term treatment liability that will persist long after coal mines have
closed. An economically sustainable approach for recovery of REYs from the leachate could
offset treatment costs.

If Fe and Al can be removed sequentially, at pH < 5.5, REYs may be retained in solution and
recovered at pH > 6.5 with manganese in later steps.
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PHREEQ-N-AMDTreat+REYs Sequential Model

Coal-Refuse Leachate—Lime Treatment vs. Alternative Treatment to Recover REYs

TreatTrainMix2REYs.exe
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Untreated leachate from a coal-refuse disposal facility in Pennsylvania is considered as a
proposed test case for REYs recovery. Current treatment utilizes neutralization with lime,
which causes precipitation of Fe, Al, and associated REYs into a complex sludge mixture. If
REYs could be concentrated after first removing substantial Fe and Al, the final REYs-bearing
phase(s) may be efficiently processed for REYs recovery.

The TreatTrainMix2REYs tool was used to simulate the current active treatment with lime
to pH 8.5 and two alternative treatments intended to concentrate REYs from the leachate.
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PHREEQ-N-AMDTreat+REYs Sequential Model

Current Treatment of Coal Refuse Leachate with Lime

TreatTrainMix2REYs.exe
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Lime to pH > 8.5

Current treatment produces sludge containing Ca, Fe, Al, Mn, and REY = -

This slide shows the user interface for the lime treatment scenario.
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PHREEQ-N-AMDTreat+REYs Sequential Model

Hypothetical Sequential Treatment of Leachate with H,0,+NaOH
TreatTrainMix2REYs.exe
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PBS Job 12: H,0, + NaOH to pH ~5.2
High acidity and REYs (up to 5.5?)
Alternative treatment to segregate Fe, Al, and Mn, concentrating REY'S -

This slide shows the user interface for the alternative treatment scenario using H202
followed by NaOH addition and settling and aeration steps.



PHREEQ-N-AMDTreat+REYs Sequential Model
Hypothetical Sequential Treatment of Leachate with H,0,+Na,CO;
TreatTrainMix2REYs.exe
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This slide shows the user interface for the alternative treatment scenario using H202
followed by Na2CO3 addition and settling and aeration steps.
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. . . .
PHREEQ-N-AMDTreat+REYs (Kinetics+Adsorption):
Sequential Treatment of Leachate with H,0,+Caustic to Concentrate REYs
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The active lime treatment to pH 8.5 results in nearly complete removal of REYs with Fe-Al-
Carich sludge. REYs, which are adsorbed primarily by HFO and HAO, are diluted by the
major metals and other impurities in the sludge.

By comparison, alternative treatment strategies using H,0, to oxidize Fe', followed by
metered addition of Na-caustic agents (NaOH or Na,CO;,) to achieve a target pH < 5.5
sequentially remove Fe and Al from solution. Subsequent aeration of the effluent over
extended time results in the oxidation of Mn which adsorbs and concentrates REYs in final
steps. The scenario using NaOH instead of Na2CO3 maintains pH < 5.5 until most Fe and Al
have been removed and, consequently, results in greater concentrations of REYs with Mn-
rich solids.

Alternatively, chemicals such as oxalate or phosphate may be added to the effluent to
precipitate REYs compounds, following initial steps to remove Fe and Al
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ABSTRACT: Coal waste products have been studied as a new source of rare
earth elements (REEs) and other critical minerals (CM) essential for the

development of renewable energy technologies, but the economic viability of these W‘

¥)

source materials is not well d. This paper ines the technoeconomic z

performance of a novel process for REE eP::'iclion from acid mine drainage g?:ir?:‘;:p D:len | ::rp:';::‘
precipitates (AMDp) from passive treatment beds in the Appalachian coal basin. || precipitate i Step d Oxides
The three-phase extraction process includes the excavation and transportation of Bachog .
AMDp, multi-phase pH-driven step-leaching of REEs under ambient conditions, m m
and commercial solvent extraction to produce a saleable-grade rare earth oxide
material that can be reduced to a pure metal. Using bench-scale data, we estimate
the life-cycle cost of extraction of REEs from two representative Appalachian
AMDp feedstock chemistries between 3400 and 5900 $/kg of the mixed REE concentrate produced. Both the AMDp composition
and process parameters affect the profitability of REE extraction, with the REE concentration and distribution of REEs in the
feedstock, extraction and precipitation reagent consumption rates, and the potential for reagent recycling as the key variables.
Economically profitable valorization of REEs from AMDp will require a combination of continued process innovation and sizable
financial incentives to substantially influence the domestic supply of REEs.

KEYWORDS: rare earth elements, technoeconomic diation, acid mine

Lifecycle Cost Assessment

. E N -~
di ige, beneficial reuse N

The PHREEQ-N-AMDTreat+REYs models suggest that conventional treatment technology to
recover REYs and other critical minerals may be feasible. Nevertheless, economic benefits
warrant further evaluation. In this 2021 paper by Fritz and others, chemical costs plus
additional factors such as purification and transportation costs were considered in their
technoeconomic assessment of REYs recovery from AMD.
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Figure 4. Changes in cash flow from process improvements and market changes to achieve break-even net profit for the best-case [Mn-rich] and

worstcase [Al-rich] scenarios.

Precipitation costs could also be tuded pletely by
eliminating the direct-to-precipitation stage by incorporating
| P paration technologies, such as sorbents. Oxalic
acid ption could be d through oxalic acid
recycling using cation exchange resins after the REE-enriched
solid precipitate is dried on the belt filter.* Future work can
experimentally determine the bench-scale reagent and energy
use of these opportunities for reduction of precipitant cost in
order to calculate the reagent, water, electricity, and waste
management cost savings.

Subsequent efforts could also quantify the effect of other
process optimizations for the step-leaching process by
examining the impact of AMD feedstock composition on
extraction costs in different limestone treatment bed
configurations. Following work could also evaluate alternative
counter-current leaching techniques that require lower acid

signi Iy reduce the environmental damages of REE mining
and extraction. Recovering REEs from REE-enriched AMDp
also has the potential to offset the costs of AMD treatment that
hinder pli with i 1 diation efforts.
Therefore, it is important to consider the range of regulatory
changes and quantify the magnitude of incentives needed to
develop a viable alternative supply chain from AMDp sources.
This study suggests that the subsidy required for the best-case
scenario with the current process design is $1900/kg REEs.
Further cost reduction is constrained by the process perform-
ance associated with the selected processing approach and the
assumptions made about plant size and feedstock availability. A
different extraction technique or a different AMD setting may
substantially change the economic viability of REO recovery.
Cooperation between the public and private sectors will bif
necessary to develop a framework for these subsidies.

b |

b Y

As suggested by Fritz et al., use of sorbents may be economically favorable over methods
involving REYs precipitation. Thus, the alternative treatment strategies simulated
previously, involving sorption by HMO, could be advantageous over other methods. The
HMO sorbent may possibly be re-used after recovery of REYs. Additional research on
specific treatment strategies and associated economic factors would be needed for any
given site-specific design.
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Conclusions

Geochemical tools using PHREEQC that incorporate equilibrium aqueous and
surface speciation plus kinetics models for oxidation processes and limestone
dissolution have been developed to evaluate mine effluent treatment options.

The user interface for the PHREEQ-N-AMDTreat tools facilitates adjustment to
input concentrations and system variables.

~ Graphical and tabular output indicates changes in the pH, solute concentrations,
and element distributions in effluent and associated solids.

By adjusting kinetics variables or chemical dosing, various passive and/or active
treatment strategies can be simulated.

AMDTreat cost-analysis software can be used to evaluate the feasibility for
installation and operation of treatments that produce the desired effluent quality.

v Geochemical tools using PHREEQC that incorporate equilibrium aqueous and surface
speciation plus kinetics models for oxidation processes and limestone dissolution have
been developed to evaluate mine effluent treatment options.

v’ The user interface for the PHREEQ-N-AMDTreat tools facilitates adjustment to input
concentrations and system variables.

v’ Graphical and tabular output indicates changes in the pH, solute concentrations, and
element distributions in effluent and associated solids.

v’ By adjusting kinetics variables or chemical dosing, various passive and/or active
treatment strategies can be simulated.

v' AMDTreat cost-analysis software can be used to evaluate the feasibility for installation
and operation of treatments that produce the desired effluent quality.



Instructions for Access, Installation, and Use

The executable software, instructions, required input files, and examples of input/output
presented today are accessible to the public at the link below.

Cravotta, C.A. III (2022) Interactive PHREEQ-N-AMDTreat+REY's water-quality
modeling tools to evaluate potential attenuation of rare-earth elements and associated
dissolved constituents by aqueous-solid equilibrium processes: U.S. Geological
Survey Software Release (software download).

To use the executable models, [PhreeqcCOM for Windows (Charlton and Parkhurst, 2011) must be installed
on the user's computer. That software is accessible for download at:

Questions can be addressed to Chuck Cravotta

Cravotta, C.A. Il (2022) Interactive PHREEQ-N-AMDTreat+REYs water-quality
modeling tools to evaluate potential attenuation of rare-earth elements and associated
dissolved constituents by aqueous-solid equilibrium processes: U.S. Geological
Survey Software Release (software download). https://doi.org/10.5066/P9M5QVKO

To use the executable models, IPhreeqcCOM for Windows (Charlton and Parkhurst, 2011)
must be installed on the user's computer. That software is accessible for download at:
https://water.usgs.gov/water-resources/software/PHREEQC/IPhreeqcCOM-3.7.3-15968-
win32.msi
https://water.usgs.gov/water-resources/software/PHREEQC/IPhreeqcCOM-3.7.3-15968-
x64.msi

Questions can be addressed to Chuck Cravotta cravotta@usgs.gov.



