Innovative Design for Treating High Flow & High Iron Waters

A non-chemical alternative for removal of iron from water

By Jon Dietz, Ph.D. Environmental Engineering & Science jon.dietz@ironoxidetech.com

How Did We Get Here?

Iron Removal from Water (e.g., Acid Mine Drainage & Groundwater)

A Two Step Process

- Ferrous Iron (Fe²⁺) Oxidation to Ferric Iron (Fe³⁺) – the rate limiting step in most treatment technologies
- Precipitation of Ferric Iron (Fe²⁺) to a hydroxide solid – very fast but the conditions (e.g., pH) determine solids quality

Ferrous Iron Oxidation Processes In Water Treatment

Homogeneous Ferrous Iron Oxidation

A solution-based oxidation process whereby Ferrous lons and hydroxide complexes (Fe²⁺, Fe(OH)⁺ & Fe(OH)₂⁰) react with dissolved oxygen to form ferric iron (Fe³⁺). *Existing active (e.g., lime) and passive treatment oxidation process.*

Heterogeneous Ferrous Iron Oxidation

A solid/solution interface oxidation process whereby Ferrous Iron (Fe²⁺) is sorbed to the surface of iron oxide (or other oxide surfaces) and in the presence of dissolved oxygen is catalytically oxidized to ferric iron (Fe³⁺). New active treatment known as AIS treatment utilizes this oxidation process.

Heterogeneous Conceptual Ferrous Iron Oxidation Surface-based Oxidation & Precipitation

AIS Pilot Study Locations

AIS Treatment Pilot Testing Shamokin Scotts Tunnel Pilot Study

Scotts Deep Mine Discharge pH = 5.75 Ferrous Iron = 25 mg/L, Flow = 12 MGD

Scotts Tunnel AIS Treatment Study Reactors, Floc Tank, Clarifier, Gyro Doser

Potential Conversion of Existing HDS Systems Lancashire Treatment System

Water Quality Analysis Lancashire AMD

Parameter	Units 📐	Field	Laboratory
Flow	gpm	4,000-5,000	NA
pН		6.25	6.50
Temperature	°C	12.5	NA
Alkalinity	mg/L as $CaCO_3$	127	115
"Hot" Acidity	mg/L as $CaCO_3$	Not Measured	-70
Total Iron	mg/L	24.4	25.3
Dissolved (Ferrous) Iron	mg/L	24.5	21.6
Total Manganese	mg/L	Not Measured	1.23
Dissolved Manganese	mg/L	Not Measured	1.17
Total Aluminum	mg/L	Not Measured	0.45
Dissolved Aluminum	mg/L	Not Measured	< 0.10
Sulfate	mg/L	Not Measured	282
Calculated CO ₂ Acidity	mg/L as $CaCO_3$]	180

Hydrogen Peroxide Treatment Flow Path

Lancashire AIS Bench Testing

Gang Mixer Used in AIS Testing of the Lancashire AMD.

Small-scale mixing system used to evaluate changes in sludge properties

AIS Bench Testing Results

Pre-aeration Tank Conditions

AIS Bench Testing Results

Aeration Tank Conditions

Lancashire AMD Treatment Plant Predicted Effluent Quality With Conversion to AIS Treatment

		Reactor 1		Reactor 2				
AMD Flow gpm	Reactor AIS g/L	Theor. Detention Time min	Modeled pH	Modeled Ferrous mg/L	Theor. Detention Time min	Modeled pH	Modeled Ferrous mg/L	Effluent Total Iron mg/L
Average	2.0	35.9	6.82	3.5	74.4	7.05	0.07	< 1
4,000	2.5	35.7	6.83	2.9	74.2	7.06	0.05	< 1
Maximum	2.0	19.9	6.45	11.5	41.4	6.87	0.65	~ 1
7,200	2.5	19.8	6.46	10.3	41.2	6.89	0.45	~ 1

AIS Treatment Flow Path

St. Joseph's Water Treatment

A Public Water Groundwater Source, Treatment Plant & Distribution System

AMERICA

f

9

 \sim

Contaminated Water In St. Joseph, La., Leads To Public Health Emergency

December 16, 2016 · 6:40 PM ET

REBECCA HERSHER

St. Joseph, La., a town of about 1,100 people in northern Louisiana. Courtesy of Garrett Boyte

Louisiana Gov. John Bel Edwards has declared a Public Health Emergency for the town of St. Joseph, after officials found water going to three buildings — one of them the town hall — was contaminated with lead or copper.

The governor said state testing showed elevated levels of lead at a private residence as well as the town hall building, on Thursday. The tests also showed "elevated levels of copper" at two private homes.

The governor's office issued a statement warning residents of St. Joseph, which is home to about 1,100 people, not to use tap water:

St. Joseph Well Water Chemistry

Well	рН	Alkalinity	CO ₂ Acidity	Total Iron	Dissolved Iron	Total Mn	Sulfate	TDS	Total Ca
	s.u.	mg/L as CaCO ₃	mg/L as CaCO₃	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
#1	6.90	436	120	19.6	19.0	0.7	10	500	130

Package AIS Treatment System

For Iron Removal at the St. Josephs Water Treatment Plant

Design Flow = 800 gallon per minute (1.1 MGD)

Treatment System Partners

- > Purestream
- > WESCO
- > Excelsior Blower Systems
- > SPX Sales Lightnin Mixers
- > Prominient Fluid Controls
- > Bryant-Hammett & Associates

Reactor Tank System

Clarifier (Lamella Type)

Mixer Units

Blower System

Sludge Return/Waste Pumps

Polymer System (Dry Powder)

St. Josephs AIS System Performance

ICT IRON OXIDE

St. Josephs AIS Operating Costs

Electricity ~ \$5,750/yr

- Mixers (3Hp + 1Hp)
- Blower (3 Hp)
- Sludge Pump (7.5 Hp @20%)
- Polymer System (~0.25 Hp)
- Polymer ~ \$650/yr
 - 0.3 mg/L Dose
 - \$3.50/lb

Materials ~ \$700/yr

- Pump Hoses
- Gear Oil
- Miscellaneous

Cost per 1,000 gallons Treated = \$0.11

A Picture of Performance!

