"User-Friendly" Geochemical Modeling to Evaluate Treatment Options for Coal-Mine Discharges

> Charles "Chuck" Cravotta III U.S. Geological Survey Pennsylvania Water Science Center cravotta@usgs.gov

"PHREEQ-N-AMDTREAT"

http://amd.osmre.gov/

SITEMAP

TIPS HOME

AMDTreat is a computer application for estimating abatement costs for AMD (acidic or alkaline mine drainage).

SUPPORT BUGLIST WISHLIST FRQ DOWNLOAD TERM PRESS INFO

AMDTREAT 5.0.2 PLUS NOW AVAILABLE!

AR HOME

AMDTreat 5.0.2 Plus corrects minor convergence issues identified during case study tests performed by the developers.

Enhancements to Version 5 of AMDTreat include incorporation of the geochemical modeling capabilities of the U.S. Geological Survey's (USGS) PHREEQ computer program to model titrations and enhancement to the oxidant tool.

For additional information, please contact Brent Means or Omar Beckford.

OSMRE HOME

DOI HOME

WHAT IS AMDTREAT?

AMDTreat (Pronounced: am'-D-treat or A-M-D-treat.), a member of OSMRE's Technical Innovation and Professional Services (TIPS) suite of software, is a computer application for estimating abatement costs for pollutional mine drainage, commonly referred to as Acid Mine Drainage or AMD. (Also Acid Rock Drainage or ARD.) The current version of AMDTreat is v5.0.2 Plus. AMDTreat can assist a user in estimating costs to abate water pollution using a variety of passive and chemical treatment types; including, vertical flow ponds, anoxic limestone drains, anaerobic wetlands, aerobic wetlands, bio reactors, manganese removal beds, limestone beds, oxic limestone channels, caustic soda, hydrated lime, pebble quicklime, ammonia, oxidation chemicals, and soda ash treatment systems. The acid mine drainage abatement cost model provides over 400 user modifiable variables in modeling costs for treatment facility construction, excavation, revegetation, piping, road construction, land acquisition, system maintenance, labor, water sampling, design, surveying, pumping, sludge removal, chemical consumption, clearing and grubbing, mechanical aeration, and ditching, AMDTreat also contains several financial and scientific tools to help select and plan treatment systems. These tools include a long-term financial forecasting module, an acidity calculator, a sulfate reduction calculator, a Langelier saturation index calculator, a mass balance calculator, a passive treatment alkalinity calculator, an abiotic homogeneous Fe2+ oxidation calculator, a biotic homogeneous Fe2+ oxidation calculator, an oxidation tool and a metric conversion tool

AMDTreat is maintained by OSMRE.

The current version of AMDTreat 5.0+ is being recoded from FoxPro to C++ to facilitate its use on computer systems running Windows 10. The PHREEQC geochemical models described below will be incorporated to run with the recoded program.

"User Friendly" PHREEQC Kinetics Models for AMDTreat

- \checkmark Atmospheric exchange: O₂ ingassing, CO₂ outgassing, and pH.
- ✓ Iron and manganese oxidation: pH-dependent homogeneous and heterogeneous rate laws (pH, pO₂, sorption) plus contributions by acidophilic and neutrophilic iron-oxidizing bacteria.
- Limestone dissolution: considers solution chemistry (pH, pCO₂) plus surface area of limestone fragments (particle size).
- Organic-carbon oxidation: reduction of sulfate and nitrate by carbon, plus Fe^{III} by adsorbed sulfide (from sulfate reduction).
- Potential water quality from various treatments can be considered to estimate system size (feasibility) and for benefits/costs analysis.

Low maintenance

High maintenance

KINETICS OF IRON OXIDATION – pH & GAS EXCHANGE EFFECTS

Iron Oxidation Kinetics are pH Dependent (abiotic and microbial processes can be involved)

Fig. 3. Rate of Fe(II) oxidation versus pH based on abiotic and biological rate laws (Kirby et al., 1999)

- ** C_{bact} is concentration of iron-oxidizing bacteria (FeOB), in mg/L, as dry weight of bacteria (2.8E-13 g/cell or 2.8E-10 mg/cell).
- The AMDTreat FeII oxidation kinetic model uses most probable number of iron-oxidizing bacteria per liter (MPNbact).
- C_{bact} = 150 mg/L is equivalent to MPNbact = 5.3E11, where Cbact = MPNbact ·(2.8E-10).

Neutrophilic rate is adjusted for optimum conditions of pH (6.5-7.5) and low DO (1.9-2.2 mg/L) (Eggerichs et al., 2014).

Iron Oxidation Rate Model combines homogeneous and heterogeneous abiotic and microbial processes

The homogeneous oxidation rate law (Stumm and Lee, 1961; Stumm and Morgan, 1996), expressed in terms of $[O_2]$ and $\{H^+\}$ (=10^{-pH}), describes abiotic oxidation of dissolved Fe^{II}:

 $-d[Fe^{II}]/dt = k_1 \cdot [Fe^{II}] \cdot [O_2] \cdot \{H^+\}^{-2}$

The heterogeneous oxidation rate law describes the catalytic abiotic oxidation of sorbed Fe^{II} on surfaces of hydrous ferric oxide (HFO) (Tamura et al., 2001):

 $-d[Fe(II)]/dt = k'_{2} (Fe(III)) \cdot [Fe(II)] \cdot [O_{2}] \cdot \{H^{+}\}^{-1} \quad or \quad -d[Fe^{II}]/dt = k_{2} \cdot [HFO_Fe^{II}] \cdot [O_{2}]$

The microbial oxidation rate laws describe the catalytic oxidation of Fe^{II} by: (1) *acidophilic iron-oxidizing bacteria*, which become relevant at pH < 5 (Kirby et al., 1999):

 $-d[Fe^{II}]/dt = k_{bio1} \cdot C_{bact} \cdot [Fe^{II}] \cdot [O_2] \cdot \{H^+\}$

and (2) *neutrophilic iron-oxidizing bacteria*, which have optimum rate at pH 6.5-7.5 and DO 1.9-2.2 mg/L (Eggerichs et al., 2014):

 $-d[Fe^{II}]/dt = k_{bio2} \cdot C_{bact} \cdot [HFO_Fe^{II}] \cdot [O_2]$

similar functions are used for manganese oxidation

Control Not Aerated

Effects of O₂ Ingassing and CO₂ Outgassing on pH and Fe^{II} Oxidation Rates

> Batch Aeration Tests at Oak Hill Boreholes (summer 2013)

Aerated

H₂O₂ Addition

PHREEQC Coupled Kinetic Model of CO₂ Outgassing & Oxidation of Fe^{II} and Mn^{II} – Oak Hill Boreholes

PHREEQC Coupled Kinetic Model of CO₂ Outgassing & Oxidation of Fe^{II} and Mn^{II} – Oak Hill Boreholes

PHREEQC Coupled Kinetic Models--Parallel

Initial Water Qua	ality					Kinetics	Constant	s, Adjustment F	actors)ak H	Hill B	orel	holes	
Design flow (gpm)	4694		factr.k	CO2	1	factr.	<02	2.1	(Tuno		, 20	12)	
Temp (C)	15.1		factr.k	FeHOM	1	factr.	kFeHFO	1	(·	June	-Jui	y 20	13)	
SC <mark>(</mark> uS/cm)	1280		bact.M	IPN/100ml	5.3E+11	factr.k	dact	1	factr	kFeNO3	0.2	5		
DO (mg/L)	1.6	1	factr.k	MnHOM	1	factr.k	(MnHFO	1	facti	. <mark>kMnHMO</mark>	0.5			
pH	6.4		factr.kSHFO		1	factr.	factr.kCorg		fact	r.kDOC	1			
Acidity (mg/L)	0		EXPcc		0.67	Sicc.lg(IAP.		0.3	factr.kFeH2O2		1			
Estimate NetAcidity	-107.9]		Add Chen	nical to Fix Initia	InH 72		loi	tial H2O2 mm	1/1				
Alk (mg/L)	150			CaO	Ca(OH)	2 O NaOH	O Na2	CO3 🔽	Estimate H2	02 mmol/L	0.1	773		
TIC (mg/L as C)	0]												
Estimate TIC	63.6	9	Step Time	hrs Temp2	2.C H2O2.mm	ol kLaCO2.1/s	SAcc.cr	n2/mol M/M0d	cc Moorg	SSolid.m	g/L Fe%	Mn%	Al%	Treat
e (mg/L)	19.7	1:	6.0	15.1	0	0.00060	0	1.00	0	0.00	100	0	0	Aer3
e2 (mg/L)	19.7	2:	6.0	15.1	0	0.00022	0	1.00	0	0.00	100	0	0	Aer2
Estimate Fe2	0	3:	6.0	15.1	0	0.00010	0	1.00	0	0.00	100	0	0	Aer1
Al (mg/L)	0.047	4:	6.0	15.1	0	0.000005	0	1.00	0	0.00	100	0	0	Aer0
Mn (mg/L)	3.6	5:	6.0	15.1	0.18	0.000005	0	1.00	0	0.00	100	0	0	H2O2
504 (mg/L)	400	Pc	arall	el: ste		e same	sta	rtina i	nfluen	t wa	ter ai	ality		
21 (mg/L)	7.9	1			opo 40.	o oumo								
Ca (mg/L)	79								. .	1:	a.h			
Mg (mg/L)	64	V	aria	Die de	tentio	on time	S, Te	emperc	iture,	Imes	stone	Surt	ace	
Na (mg/L)	31.6	ar	rea,	organ	ic carl	oon, so	rbe	nt mas	s and	comp	051110	on, p	lus	
(mg/L)	1.74	a	djust	table	CO2 01	utgass	ing c	and oth	ner ra	tes b	y "fa	ctor	s".	
ŝi (mg/L)	5.72		1											
NO3N (mg/L)	0.1					Genera	ate Seque	ntial Kinetics Ou	utput					
TDS (mg/L)	0	1		V Plot Dis	s. Metals	📄 Plot Ca, /	Acidity	Plot S	at Index		Plot PPT Soli	ds		
DOC (mg/L as C)	0.1	1												

CO_2 Outgassing is Proportional to O_2 Ingassing (model specifies first-order rates for out/in gassing)

 $-d[C]/dt = k_{L,C}a \cdot ([C] - [C]_S)$ exponential, asymptotic approach to steady state

Estimated CO_2 Outgassing & O_2 Ingassing Rate Constants for Various Treatment Technologies

Table S.4 Values of rate constants for CO₂ outgassing and O₂ ingassing used for kinetic models

	Temper-		CO ₂ O	utgas
Site	ature		k _{L,C}	₀₂ a
	(°C)	(s ⁻¹)	lo	g(s ⁻¹)
Treatment Systems				
Maelstrom (Sykesville, Trent, St.Michaels)	20	0.03 Fast		-1.52
Surface Aerator (Renton, other)	20	0.001		-3.00
Mechanical Aerator (Lancashire)	20	0.0006		-3.22
Aeration Cascade/Level Spreader (Silver Cr)	20	0.01		-2.00
Rip-rap Spillway/Ditch (Silver Cr, Pine Forest,	20	0.005		-2.30
Pond (Silver Cr, Pine Forest, Lion Mining, Flight93)	20	0.00001	Slow	-5.00
Wetland (Silver Cr, Pine Forest, Lion Mining)	20	0.00001		-5.00
Oak Hill Aeration Expts.				
Aer3	20	0.00060	Fast	-3.22
Aer2	20	0.00022		-3.66
Aer1	20	0.00010		-4.00
AerO	20	0.000012	Slow	-4.92

*Gas mass-transfer rate corrected to 20^oC per Rathbun (1998, Eq. 56) using the expression: kL,a 20 = kL,a TC /(1.0241^(TC-20)).

 $kL_a TC = kL_a 20 * (1.0241^{(TC-20)}).$

kL,a_20 = $(LN((C_1-C_S)/(C_2-C_S))/t) / (1.0241^{(TEMPC-20)})$, where C is CO₂ or O₂. Dissolved O₂, temperature, and pH were measured using submersible electrodes. Dissolved CO₂ was computed from alkalinity, pH, and temperature data.

KINETICS OF LIMESTONE DISSOLUTION – pH, CO₂, and SURFACE AREA EFFECTS

Limestone Dissolution Rate Model for AMDTreat ("PWP" model emphasizes pH and CO₂)

According to Plummer, Wigley, and Parkhurst (1978), the rate of CaCO₃ dissolution is a function of three forward (dissolution) reactions: $CaCO_3 + H^+ \rightarrow Ca^{2+} + HCO_3^ k_1$ $CaCO_3 + H_2CO_3^* \rightarrow Ca^{2+} + 2 HCO_3^ k_2$ $CaCO_3 + H_2O \rightarrow Ca^{2+} + HCO_3^- + OH^ k_3$ and the backward (precipitation) reaction: $Ca^{2+} + HCO_3^- \rightarrow CaCO_3 + H^+$ k_4

Although H^+ , $H_2CO_3^*$, and H_2O reaction with calcite occur simultaneously, the forward rate is dominated by a single species in the fields shown. More than one species contributes significantly to the forward rate in the gray stippled area. Along the lines labeled 1, 2, and 3, the forward rate attributable to one species balances that of the other two.

Limestone Dissolution Rate Model for AMDTreat (surface area correction for coarse aggregate)

Surface area for various coarse aggregates (bold indicates sizes commonly used in limestone beds; 2NS used in cubitainers).

Gradation	Number	Weight (g)	Pa	rticle Dime	nsions (c	m)	Particle S	urface Are	ea (cm^2)	Unit Surface Area (cm^2/g)				
AASHTO	PA	Average Particle	Long Axis	Inter- mediate	Short Axis	Average Axis	Rectan- gular Prism	Sphere	Ellipsoid	Rectan- gular Prism	Sphere	Ellipsoid		
R-5		22160.145	45.72	22.86	13.34	27.31	3919.35	2342.26	2862.08	0.18	0.11	0.13		
R-4		7113.133	30.48	16.51	8.89	18.63	1841.93	1089.98	1319.11	0.26	0.15	0.19		
R-3		1185.522	16.51	8.89	5.08	10.16	551.61	324.29	395.61	0.47	0.27	0.33		
1	4	341.978	8.89	6.35	3.81	6.35	229.03	126.68	155.24	0.67	0.37	0.45		
3	3A	78.166	5.08	3.81	2.54	3.81	83.87	45.60	56.39	1.07	0.58	0.72		
5		9.771	2.54	1.91	1.27	1.91	20.97	11.40	14.10	2.15	1.17	1.44		
57	2B	3.257	2.54	1.27	0.635	1.48	11.29	6.90	8.25	3.47	2.12	2.53		
	2NS	9.771	2.54	1.91	1.27	1.91	20.97	11.40	14.10	2.15	1.17	1.44		
67	2	1.832	1.91	0.95	0.635	1.16	7.26	4.26	5.28	3.96	2.32	2.88		
	1NS	1.221	1.27	0.95	0.635	0.95	5.24	2.85	3.52	4.29	2.33	2.89		
7		1.221	1.27	0.95	0.635	0.95	5.24	2.85	3.52	4.29	2.33	2.89		
8		0.382	0.95	0.79	0.3175	0.69	2.62	1.49	1.70	6.87	3.90	4.44		
	1B	0.382	0.95	0.79	0.3175	0.69	2.62	1.49	1.70	6.87	3.90	4.44		

Particle dimensions were estimated on the basis of ranges for graded materials reported in Pennsylvania Department of Environmental Protection, 2000, Erosion and sediment pollution control program manual: Harrisburg, Pennsylvania Dept. Environmental Protection Bureau of Watershed Management, Document No. 363-2134-008, 180 p. (tables 9 and 10A).

Plummer, Wigley, and Parkhurst (1978) reported unit surface area (SA) of 44.5 and 96.5 cm²/g for "coarse" and "fine" particles, respectively, used for empirical testing and development of PWP rate model. These SA values are 100 times larger than those for typical limestone aggregate. *Multiply cm²/g by 100 g/mol to get surface area (A) units of cm²/mol used in AMDTreat rate model.*

Surface area computed for various geometric forms:

Sphere: 4pi*(Average of Axes/2)^2

Rectangular Prism: 2*(Long Axis*Short Axis)+2*(Long Axis*Intermediate Axis)+2*(Short Axis*Intermediate Axis)

Ellipsoid: $(pi^{D^{2}})/S$, where $D=2^{(vol/(4/3pi))^{(1/3)}}$

S=1.15-0.25E

E=Long Axis/D

Volume computed for same geometric forms:

Sphere: 4/3*pi*(Average Axis/2)^3

Rectangular Prism: (Long Axis*Short Axis*Intermediate Axis)

Ellipsoid: 4/3*pi* (Long Axis/2*Short Axis/2*Intermediate Axis/2)

For ellipsoid sphere, this reduces to 0.5236*Long Axis*Short Axis*Intermediate Axis

Santomartino and Webb (2007, AG, 22:2344-2361) estimated volume of ellipsoid as 0.6*volume of rectangular prism of same dimensions.

"2017 Model" For AMDTreat — PHREEQC Coupled Kinetic Models of Limestone Dissolution & Fe^{II} Oxidation

ncr	000 M		Tare	14240	~
FlowGr	-141 630	ImestoneDiss	Timese	CS 14240	ΟL
Fe	14.0	SAccDIS	0.72e+02	Surface area	<u></u>
Esti	mate Fe2	EXPccDIS	0.67	Equilibrium approach	07
Fe2	14.0	M/M0cc	1.00	Mass available	DC
A	0.09	FellOxidation	TimeSe	cs 47015	
Mn	3.1	🔽 Use Lim	estoneDiss	Effluent	Sy
pН	5.79	kLaCO2	0.00005	CO ₂ outgassing rate	
Alk	26	factr.kCO2	1	Adjustment CO ₂ outgassir	ng rate
🔽 Esti	mate TIC	factr.k02	2	Adjustment O ₂ ingassing r	rate (x k
TIC	42.25	factr.k1Fe	1	Adjustment abiotic homo	geneou
SO4	330	factr.k2Fe	0	Adjustment abiotic hetero	ogeneo
a	4.0	bactMPN	5.30E+11	Iron oxidizing bacteria	\sim
Ca	56	SICCPPT	0.3	Calcite saturation limit	U i
Mg	51	H2O2mmol	0	Hydrogen peroxide addec	fo
Na	7.4	factr.kh2o2	1	Adjustment to H2O2 rate	
TempC	11.63	FellIRecirculate	d Felli	2000	0)
SC.uS/	/cm 700				W
DO	0.4	Generate Kine	tics Output		•••

Rate models for calcite dissolution, CO_2 outgassing and O_2 ingassing, and Fe^{II} oxidation are combined to evaluate possible reactions in passive treatment systems.

Can simulate limestone treatment followed by gas exchange and Fe^{II} oxidation in an aerobic pond or aerobic wetland, or the independent treatment steps (not in sequence).

New "User-Friendly" Model:

Initial Water Qua	ality					Kinetic:	s Constants,	Adjustment Fa	actors				
Design flow (gpm)	10008		factr.kCO2	2	1	factr	.k02	2.1					
Temp (C)	9.75		factr.kFeHOM 1		1	factr.kFeHFO		1					
SC (uS/cm)	430		bact.MPN/100ml		5.3E+11	factr.kbact		1	factr.kFeNO3		0.25		
DO (mg/L)	9.8		factr.kMnH	factr.kMnHOM 1		factr.	k Mn HFO	1	factr.kMnHM		0.5		
pH	3.55		factr.kSHFO		1	factr.kCorg		100	factr.kDOC		1		
Acidity (mg/L)	64		EXPcc		0.67	0.67 Sicc.lg(IAP		0.3	fac	tr.kFeH2O2	1		
Estimate NetAcidity	64.9		m _ 4	dd Chan	nical to Fix Initial n	H 72		Init	ial H2O2 mm	ol/l	0		-
Alk (mg/L)	0) CaO	Ca(OH)2	NaOH	Na2C	03	Estimate 112	02	0	00100	-
TIC (mg/L as C)	0			/	0 00(01.1/2	0.1.1.1			Estimate H2	02.mmol/L	U	.00138	
Stimate TIC	1.2	Ste	ep Time.hrs	Temp2	2.C kLaCO2.1/s	SAcc.cm2	/mol M/M0	lcc Mcorg	SSolid.m	g/L Fe%	Mn%	AI%	Treatment
Fe (mg/L)	0.96	1:	0.75	12.1	0.000005	0	1.00	0	1.00	100	0.00	0.00	Sedimentation pond
Fe2 (mg/L)	0.22	2:	1.0	12.1	0.000005	0	1.00	0	1.00	100	0.00	0.00	VFP water
Estimate Fe2	0	3:	4.0	15.1	0.0	444	0.25	20	20.00	10.0	0.00	90.0	VFP compost
Al (mg/L)	7.8	4:	4.0	15.1	0.0	72	1.00	0	0.10	90.0	0.00	10.0	VFP limestone
Mn (mg/L)	2.8	5:	0.033	15.5	0.005	0	1.00	0	0.10	90.0	0.00	10.0	Aeration cascades
SO4 (mg/L)	151	6:	2.0	16.5	0.000005	0	1.00	0	1.00	90.0	0.00	10.0	Aerobic Wetland
Cl (mg/L)	9.8	7:	0.0083	16.6	0.005	33	1.00	0	1.00	89.9	0.10	10.0	Aeration, LS riprap
Ca (mg/L)	14.8	8:	2.0	17.0	0.000005	0	1.00	0	1.00	89.9	0.10	10.0	Aerobic Wetland
Mg (mg/L)	17	9:	0.0083	17.0	0.005	33	1.00	0	1.00	80.0	11.00	9.0	Aeration, LS riprap
Na (mg/L)	8.8	10:	1.25	17.0	0.0005	72	1.00	0	20.0	1.0	98.0	1.00	Mn removal bed
K (mg/L)	1.8	11:	0.083	17.0	0.005	33	1.00	0	0.10	100	0.00	0.00	Ditch, LS riprap
Si (mg/L)	8.3	Se	allen	tial	stens	Varia	ble d	etenti	on tir	nes t	emn	erat	ture
NO3N (mg/L)	0.03	lim	acto	noc	urface	area	oroc	nic co	rhon	sorh	ont	mac	s and
TDS (mg/L)	264			10 3			, ur gu						
DOC (mg/L as C)	0	C01	mposi	101	i, pius c	ເປັງປຽງ	Iddle	$U_2 0$	urgas	sing	ana	othe	er rates.

DOC (mg/L as C)

0

"VFP	' + A	ler	obi	сP	ond	+ W	et	la	nds	5 + 1	۸n	-Re	ema	oval Bed
Initial Water Qua	ality					Kinetics C	onstants	s, Adju	istment Fac	tors N	lore	a M	ine:	
Design flow (gpm)	5073		factr.kCO.	<u> </u>	1	factr.kU	12	2.1		100		not		2 A I
Temp (C)	10.1		factr.kFeF	юм	1	factr.kF	eHFO	1	_	mode		ru ι	ere	CARI
SC (uS/cm)	455	1	bact.MPN/100ml 5		5.3E+11	factr.kba	act	1		factr.kFeNO3		0	.25	
DO (mg/L)	4.83		factr.kMnHOM 1		1	factr.kM	InHFO	1		factr.kMnHMO		0	.5	
рH	3.54		factr.kSHFO		1	factr.kC	org 100		1	factr.kDOC		1		
Acidity (mg/L)	42.8		EXPcc 0		0.67	Sicc.lg(I/		AP/K) 0.3		factr.kFeH2O2		1		
Stimate NetAcidity	0			Add Cherr	nical to Fix Initial r	H 73			Initia	I H2O2 mmol/	n.	ī	1	-
Alk (mg/L)	0) CaO	Ca(OH)2	NaOH (Na20	03		stimate H2O2	mmol/l	0		-
TIC (mg/L as C)	0													
Estimate TIC	0	Ste	ep Time.hrs	Temp2	2.C kLaCO2.1/s	SAcc.cm2/m	ol M/M	l0cc	Mcorg	SSolid.mg/l	. Fe%	Mn%	Al%	Treatment
Fe (mg/L)	7.28	1:	1.0	12.1	0.000005	0	1.00		0	1.00	100	0.00	0.00	Sedimentation pond
Fe2 (mg/L)	6.02	2:	1.0	12.1	0.000005	0	1.00		0	1.00	100	0.00	0.00	VFP water
Estimate Fe2	0	3:	3.0	15.1	0.0	444	0.25		20	5.00	10.0	0.00	90.0	VFP compost
Al (mg/L)	3.23	4:	6.0	15.1	0.0	72	1.00		0	0.10	98.9	0.10	1.00	VFP limestone
Mn (mg/L)	1.41	5:	0.05	15.5	0.005	0	1.00		0	0.10	98.9	0.10	1.00	Aeration cascades
SO4 (mg/L)	137	6:	8.0	16.5	0.000005	0	1.00		0	1.00	98.9	0.10	1.00	Aerobic Wetland
Cl (mg/L)	5.55	7:	0.00833	16.6	0.005	33	1.00		0	1.00	98.9	0.10	1.00	Aeration, LS riprap
Ca (mg/L)	20.25	8:	3.0	17.0	0.000005	0	1.00		0	1.00	98.9	0.10	1.00	Aerobic Wetland
Mg (mg/L)	7.6	9:	0.00833	17.0	0.005	33	1.00		0	1.00	98.9	0.10	1.00	Aeration, LS riprap
Na (mg/L)	7.77	10:	1.0	17.0	0.0005	72	1.00		0	20.0	1.0	98.0	1.00	Mn removal bed
K (mg/L)	1.11	11:	0.0833	17.0	0.005	33	1.00		0	0.10	100	0.00	0.00	Ditch, LS riprap
Si (mg/L)	7.77						5 ber							
NO3N (mg/L)	0.1					Generate	Sequer	ntial Ki	netics Outp	out				
TDS (mg/L)	0			Plot Dis	s. Metals	Plot Ca, Aci	idity		Plot Sat	Index	F	lot PPT S	olids	
DOC (mg/L as C)	0.1													

"VFP" + Pond + Wetlands + Mn-Removal Bed Morea Mine Discharge, Mill Creek Watershed

"VFP" + Pond + Wetlands + Mn-Removal Bed Morea Discharge, Mill Creek Watershed

								area of	area of	AASHTO	C-CO2	limo	compost
			deten-	deten-				water	water	stone	fraction in	stone	organics
		flow rate,	tion time,	tion time,			volume,	surface,	surface,	particle	bulk,	mass,	mass,
Step	Treatment	ft3/s	secs	hr	depth, ft	porosity	ft3	ft2	acres	size	M/M0cc	tons	tons
1	Sedimentation pond	11.30	3600	1.00	4.00	1.00	40697	10174	0.23		1.00	<u>) (</u>) 0
2	VFP water	11.30	3600	1.00	2.00	1.00	40697				1.00) () 0
3	VFP compost	11.30	10800	3.00	2.00	0.45	271310			8	0.25	i 308€	6244
4	VFP limestone	11.30	21600	6.00	4.00	0.45	542620	106828	2.45	3	1.00	24686	30
5	Aeration	11.30	180	0.05	0.10	1.00	2035	20348	0.47		1.00) () 0
6	Oxidation Pond	11.30	28800	8.00	4.00	1.00	325572	81393	1.87		1.00) () 0
7	Aeration	11.30	30	0.01	0.10	0.45	754	7536	0.17	R-3	1.00) 34	+ 0
8	Aerobic Wetland	11.30	10800	3.00	1.00	1.00	122090	122090	2.80	l.	1.00) () 0
9	Aeration	11.30	30	0.01	0.10	0.45	754	7536	0.17	R-3	1.00) 34	t 0
10	Mn removal bed	11.30	3600	1.00	0.50	0.45	90437	180873	4.15	3	1.00) 4114	t 0
11	Ditch	11.30	300	0.08	0.50	0.45	7536	15073	0.35	R-3	1.00) 343	3 0
1 to 11	Total:			23.15	18.30			551852	12.66	\supset		32298	6244

AASHTO average particle diameter: R-3, 4 inch (10.16 cm); 3, 1.5 inch (3.81 cm); 8, 0.25 inch (0.69 cm).

Volume is computed as the product of flow rate and detention time. Design flow rate of 5073 gal/min = 11.30 ft³/s.

Area is computed as the volume divided by depth; for the VFP, volumes and depths for each of the three steps are summed before computing area.

Masses of limestone and compost are computed as the product of their respective volume and bulk density.

PHREEQC Coupled Kinetic Models Sequential Steps— Silver Creek Aerobic Wetlands

<u>Treatment</u> Untreated Pond Cascade Pond Cascade Pond Riprap Wetland Riprap Wetland Riprap NULL

<u>Step</u> 0

> 2 3

4

5

6

7

8

9

10

11

PHREEQC Coupled Kinetic Models--Sequential Steps Ponds + Wetlands Kinetics Constants, Adjustment Factors Initial Water Quality Design flow (apm) factr.kCO2 factr.kO2 Silver Creek (160808) 750 1 21 Temp (C) factr kFeHOM 1 factr.kFeHFO 12.12 1 SC (uS/cm) 0.25 bact.MPN/100ml 5.3E+11 factr.kbact 1 502 factr.kFeNO3 DO (mg/L) 1 0.5 factr.kMnHOM 1 0.56 factr.kMnHFO factr.kMnHMO factr.kSHFO 1 factr.kDOC 1 factr.kCorg 100 pH 6.03 EXPcc 0 0.67 Slcc.lg(IAP/K) 0.3 factr.kFeH202 1 Acidity (mg/L) Estimate NetAcidity 0 Add Chemical to Fix Initial pH 7.3 Initial H2O2.mmol/L 0 Alk (ma/L) 45.5 Ca(OH)2 NaOH Na2CO3 CaO Estimate H2O2.mmol/L 0 TIC (mg/L as C) 29.8 V Estimate TIC 0 Step Time.hrs Temp2.C kLaCO2.1/s SAcc.cm2/mol M/M0cc Mcorg SSolid.mg/L Fe% Mn% Al% Treatment Fe (mg/L) 20.0 1.13 0.5 0 45.0 1: 13,91 0.000001 1.00 0.10 0.03 3.45 Pond 20.0 Fe2 (mg/L) 0.008 0.0025 0.5 0 5.40 2: 14.11 1.00 0.10 41.0 0.02 Aeration cascades 0 Estimate Fe2 137.0 17.93 0.000001 05 1 00 0 1 00 41.0 0.02 5 40 Pond 3. AI (mg/L) 0.17 0.008 18.41 0.0025 0.5 0 Aeration cascades 4. 1.00 1.00 46.0 0.85 1.00 Mn (mg/L) 2.9 234.1 5: 25.23 0.000002 0.5 1.00 0 1.00 46.0 0.85 1.00 Pond SO4 (mg/L) 167 6: 0.033 24.45 0.01 45 1.00 0 1.00 38.0 6.10 1.40 Riprap cascades CI (mg/L) 4.0 7: 31.2 25.55 0.000002 0.5 1.00 0 1.00 38.0 6.10 1.40 Aerobic Wetland Ca (mg/L) 40 8: 0.033 24.49 0.01 45 1.00 0 1.00 43.0 4.30 0.55 **Riprap cascades**

Riprap cascades Aerobic Wetland Ditch, riprap

25 9: 39.4 28.97 0.000002 0.5 0 0.55 1.00 1.00 43.0 4.30 2.2 10: 0.0 29.00 0.005 45 1.00 0 1.00 43.0 4.30 0.55 0.82 11: 0.0 29.00 0.0 0 1.00 0 0.00 43.0 4.30 0.55 NULL 6.4 Generate Sequential Kinetics Output 3.8 V Plot Dis, Metals Plot Ca. Acidity Plot Sat Index Plot PPT Solids 0

Mg (mg/L)

Na (mg/L)

K (mg/L)

Si (mg/L)

NO3N (ma/L)

TDS (mg/L)

DOC (mg/L as C)

2.3

Silver Creek Aerobic Wetlands

Silver Creek Aerobic Wetlands

PHREEQC Coupled Kinetic Models Sequential Steps— Pine Forest ALD + Pond + Aerobic Wetlands

Step	Treatment
0	Untreated
1	ALD
2	Riprap
3	Pond
4	Riprap
5	Wetland
6	Cascade
7	Wetland
8	Cascade
9	Wetland
10	Riprap
11	NULL

PHRE	EQC	C Co	oupl	ed	Kine	etic	Mo	odel	53	5eq	uer	ntic	al Steps	
Initial Water G	Quality					Kinetics Co	onstants,	Adjustment Fa	ctors A	_D +	Pon	d + V	Vetlands	
Design flow (gpm)	690]	factr.kCO2		1	factr.k0	2	2.1	Pine Forest (151212)					
Temp (C)	11.63		factr.kFeHC	M	1	factr.kFe		1			1 63	1 (10)1616)	
SC (uS/cm)	700		bact.MPN/100ml		5.3E+11	.3E+11 factr.kbac		2	factr.kFeNO3		0.25			
DO (mg/L)	0.4	1	factr.kMnH0	MC	1 factr.kMr		nHFO	1	factr.kMnHMO		0.5			
рH	5.79	1	factr.kSHF	D	1 factr.kCor		org 100		factr.kDOC		1			
Acidity (mg/L)	0		EXPcc		0.67 Sicc.lg(IA		AP/K) 0.3		factr.kFeH2O2		1			
Stimate NetAcid	lity -1.7				and the Day leaded a	11 70		1-3-		-1/1		2		
Alk (mg/L)	33				Calito Fix Initial p	H 7.3 ○ NaOH @	Na2CO)3 📼		0I/L	U	100		
TIC (mg/L as C)	0		0	000	Colonie	0.1550.0	-	v .	Estimate H2	02.mmol/L	U	.126		
Estimate TIC	39.3	Ste	ep Time.hrs	Temp2.	C kLaCO2.1/s	SAcc.cm2/md	ol M/MOd	c Moorg	SSolid.mg	g/L Fe%	Mn%	Al%	Treatment	
Fe (mg/L)	14.0	1:	4.0	11.63	0.00001	72	1.00	0	80.00	99.0	1.00	0.00	ALD	
Fe2 (mg/L)	14.0	2:	0.0083	11.6	0.02	0	1.00	0	1.00	95.0	5.00	0.00	Aeration, LS riprap	
Estimate Fe2	0	3:	13.0	12.16	0.00002	0	1.00	0	1.00	95.0	5.00	0.00	Pond	
Al (mg/L)	0.09	4:	0.0028	12.16	0.005	0	1.00	0	1.00	95.0	5.00	0.00	Riprap	
Mn (mg/L)	3.1	5:	8.0	12.15	0.00005	0	1.00	0	5.00	70.0	30.00	0.00	Aerobic Wetland	
SO4 (mg/L)	225	6:	0.0028	12.15	0.005	0	1.00	0	1.00	70.0	30.00	0.00	Cascades	
Cl (mg/L)	4.0	7:	6.1	12.04	0.00005	0	1.00	0	5.00	60.0	40.00	0.00	Aerobic Wetland	
Ca (mg/L)	56	8:	0.0028	12.04	0.005	0	1.00	0	1.00	60.0	40.00	0.00	Cascades	
Mg (mg/L)	51	9:	1.1	11.88	0.00001	0	1.00	0	1.00	60.0	40.00	0.00	Aerobic Wetland	
Na (mg/L)	7.4	10:	0.0042	11.88	0.005	0	1.00	0	0.0	60.0	40.00	0.00	Ditch, LS riprap	
K (mg/L)	0.54	11:	0.0	11.88	0.0	0	1.00	0	0.0	100	0.00	0.00	NULL	
Si (mg/L)	5.4						2.000							
NO3N (mg/L)	1.5					Generate	Sequenti	al Kinetics Out	put					
TDS (mg/L)	450	1		Plot Dis.	Metals	Plot Ca, Aci	dity	Plot Sa	t Index	F F	Plot PPT S	olids		
DOC (mg/L as C)	3.67	1												

Pine Forest ALD + Aerobic Wetlands

Pine Forest ALD + Aerobic Wetlands

Demonstrations

- Oak Hill Aeration experiments (parallel):
- \checkmark Aer3, Aer2, Aer1, Aer0, H₂O₂
- Morea (sequential treatment steps):
- $\checkmark VFP + A + Pond + A + Wetlands + A + Mn bed + A$

- Pine Forest (sequential treatment steps):
- \checkmark ALD + A + Pond + A + 3x(Wetlands + A)

Conclusions

- Geochemical kinetics tools using PHREEQC have been developed to evaluate mine effluent treatment options.
- Graphical and tabular output indicates the pH and solute concentrations in effluent.
- By adjusting kinetic variables or chemical dosing, various passive and/or active treatment strategies can be simulated.
- AMDTreat cost-analysis software can be used to evaluate the feasibility for installation and operation of treatments that produce the desired effluent quality.

Disclaimer / Release Plans

"Although this software program has been used by the U.S. Geological Survey (USGS), no warranty, expressed or implied, is made by the USGS or the U.S. Government as to the accuracy and functioning of the program and related program material nor shall the fact of distribution constitute any such warranty, and no responsibility is assumed by the USGS in connection therewith."

- ✓ FY2017-2018 Development, beta testing and review.
- FY2018 Provisional USGS "software release" planned:
- <u>https://water.usgs.gov/software/lists/geochemical</u>
- FY2019 Incorporation of PHREEQC treatment simulations with AMDTreat to be released by OSMRE:
- ✓ <u>http://amd.osmre.gov/</u>

References

- Burrows JE, Cravotta CA III, Peters SC (2017) Enhanced Al and Zn removal from coal-mine drainage during rapid oxidation and precipitation of Fe oxides at near-neutral pH: Applied Geochemistry 78, 194-210.
- Cravotta CA III, Ward SJ, Hammarstrom JM (2008) Downflow limestone beds for treatment of net-acidic, oxic, iron-laden drainage from a flooded anthracite mine, Pennsylvania, USA--Laboratory evaluation. Mine Water and the Environment 27, 86-99.
- Cravotta CA III (2015) Monitoring, field experiments, and geochemical modeling of Fe(II) oxidation kinetics in a stream dominated by netalkaline coal-mine drainage, Pennsylvania, U.S.A. Applied Geochemistry 62, 96-107.
- Cravotta CA III, Means B, Arthur W, McKenzie R, Parkhurst DL (2015) AMDTreat 5.0+ with PHREEQC titration module to compute caustic chemical quantity, effluent quality, and sludge volume. Mine Water and the Environment 34, 136-152.
- Davison W, Seed G (1983) The kinetics of the oxidation of ferrous iron in synthetic and natural waters. Geochimica et Cosmochimica Acta 47, 67-79.
- Dempsey BA, Roscoe HC, Ames R, Hedin R, Byong-Hun J (2001) Ferrous oxidation chemistry in passive abiotic systems for the treatment of mine drainage. Geochemistry: Exploration, Environment, Analysis 1, 81-88.
- Dietz JM, Dempsey BA (2002) Innovative treatment of alkaline mine drainage using recirculated iron oxides in a complete mix reactor. American Society of Mining and Reclamation 19th Annual Meeting, p. 496-516.
- Eggerichs T, Opel O, Otte T, Ruck W (2014) Interdependencies between biotic and abiotic ferrous iron oxidation and influence of pH, oxygen and ferric iron deposits. Geomicrobiology Journal, 31: 461-472.
- Geroni JN, Cravotta CA III, Sapsford DJ (2012) Evolution of the chemistry of Fe bearing waters during CO₂ degassing. Applied Geochemistry 27, 2335-2347.
- Kirby CS, Thomas HM, Southam G, Donald R (1999) Relative contributions of abiotic and biological factors in Fe(II) oxidation in mine drainage. Applied Geochemistry 14, 511-530.
- Kirby CS, Dennis A, Kahler A (2009) Aeration to degas CO₂, increase pH, and increase iron oxidation rates for efficient treatment of net alkaline mine drainage: Applied Geochemistry 24, 1175-1184.
- Parkhurst DL, Appelo CAJ (2013) Description of input and examples for PHREEQC version 3—A computer program for speciation, batchreaction, one-dimensional transport, and inverse geochemical calculations. USGS Techniques Methods 6-A43, 497 p.
- Pesic B, Oliver DJ, Wichlacz P (1989) An electrochemical method of measuring the oxidation rate of ferrous to ferric iron with oxygen in the presence of *Thiobacillus ferrooxidans*. Biotechnology and Bioengineering 33, 428-439.
- Plummer LN, Wigley ML, Parkhurst DL (1978) The kinetics of calcite dissolution in CO₂-water systems at 5° to 60°C and 0.0 to 1.0 atm CO₂. American Journal of Science 278, 179-216.
- Rathbun RE (1998) Transport, behavior, and fate of volatile organic compounds in streams: USGS Professional Paper 1589, 151 p.
- Singer PC, Stumm W (1970) Acidic mine drainage: the rate-determining step. Science 167, 121-123
- Stumm W, Lee G.F. (1961) Oxygenation of ferrous iron. Industrial and Engineering Chemistry 53, 143-146.
- Stumm W, Morgan JJ (1996) Aquatic chemistry--chemical equilibria and rates in natural waters (3rd): New York, Wiley-Interscience, 1022 p. Tamura H, Goto K, Nagayama M (1976) The effect of ferric hyrdroxide on the oxygenation of ferrous iron in neutral solutions. Corrosion Science 16, 197-207.