

Civil & Environmental Consultants, Inc.

Stream Restoration on Mining Impacted Watersheds

West Virginia Mitigation Banking

Timothy A. Denicola

Purpose

- Applying natural stream design to improve ecological function of degraded watersheds
 - Restore streams to stable geomorphologic condition
 - Revegetate stream buffers, eradicate invasive vegetation
 - Deed restrict property access
- Project area located on Abandoned Mine Land (AML)
- Reduce negative AML impacts on restoration success

Successful Stream Restoration

Study Area

- Northern WV
- Contour & Underground
 - Redstone Coal
 - Pittsburgh Coal
- Partial Reclamation
- ► 303(d) TMDL
 - Total Iron

Residual Mining Impacts

Disturbs local and regional geomorphology, hydrology, chemistry, and ecology

- Excavation of geologic units
- Disposal of overburden
- Development of surface seeps and mine pools
- Impacts to tributary headwaters
- Generation of acidity, metal precipitates (Fe, Al, Mn), and Total Dissolved Solids (TDS)
- Degradation of aquatic habitats

Residual Mining Impacts

Impacts on Stream Restoration

- Acid generation;
- Ochres precipitate;
- High TDS;
- Disconnected tributary headwaters; and
- Excavation of unstable mine spoil.

Civil & Environmental Consultants, Inc.

Approach

- Identify spoil from high resolution
 LIDAR imagery
- Overlay grading limits on digitized spoil area
- "Hot" material heterogeneously distributed
- Proceed with geotechnical assessment

Standard Approach

- Identify areas with potential for impairment
 - High Iron, discoloration, reduced substrate porosity
 - High TDS, aquatic impacts
 - Unstable construction material
- Geotechnical (Physical & Chemical)
 - Compressive & shear strengths, density, moisture, Atterburg Limits, factor of safety
 - Acid-base accounting (ABA), reactive sulfur, total iron
- Sampling Strategies (Barnhisel et. al. 2000)

Watershed approach vs. geotechnical approach

- Utilize data collected for watershed planning purposes
- Utilize statistical techniques to identify variables
- Data collection (43 water quality samples)
 - Collected spatially and temporally
 - Collected from headwaters, tributaries, mainstems, wetlands, seeps, etc..

Approach

- Quality Assurance / Quality Control (QA/QC)
 - Half minimum detection limit (MDL) for non-detects
 - Charge balance error (CBE)
 - Omitted CBE exceeding ±20%, two erroneous discharge measurements

Univariate Statistical Techniques

Assessed distribution, median, lower/upper quartile, min/max, outliers

Bivariate Statistical Techniques

- Utilized principal component analysis (PCA) to identify variables
- Utilized cluster analysis to assign variables to categories

Results

FeT

SO4

- Normal Distribution
 - pH and TDS
- Skewed Distribution
 - Metals and Load
 - Outliers
 - Grubs, 1969
- Overall alkaline, low metal, high TDS
 - TDS driven by Ca, Alk, SO4

Total Dissolved Solids

Sample ID	TDS	Ca	Alk	SO4	Total
	mg/L		%		
1	1119	20%	34%	40%	94%
2	841	20%	27%	46%	92%
3	948	19%	23%	51%	92%
4	1350	19%	31%	45%	94%
5	378	17%	26%	50%	93%
6	2313	21%	16%	57%	95%
7	1428	22%	24%	49%	94%
8	1925	23%	10%	61%	94%
9	1086	15%	17%	55%	88%
10	299	15%	58%	22%	95%
12	644	22%	24%	45%	91%
13	432	19%	14%	62%	95%
14	790	20%	6%	68%	94%
15	614	21%	19%	53%	93%
16	939	19%	20%	54%	92%
17	978	20%	18%	54%	92%
18	784	17%	21%	56%	93%
19	888	20%	15%	58%	92%
21	526	21%	17%	55%	92%
22	1126	19%	24%	48%	92%
23	1087	19%	24%	51%	95%

Sample ID	TDS	Ca	Alk	SO4	Total
	mg/L		%		
24	829	20%	32%	39%	92%
25	717	20%	22%	51%	93%
26	631	21%	19%	52%	92%
27	468	18%	23%	52%	93%
28	391	20%	15%	56%	91%
29	474	23%	11%	57%	91%
30	407	24%	12%	55%	91%
31	635	19%	28%	46%	93%
32	608	21%	24%	47%	92%
33	525	19%	24%	50%	93%
34	454	18%	17%	55%	90%
35	522	20%	12%	58%	90%
36	399	20%	12%	58%	91%
37	1346	17%	13%	63%	93%
38	1145	19%	12%	60%	92%
39	844	17%	14%	62%	93%
40	1307	23%	13%	54%	91%
41	2211	19%	19%	56%	94%
42	1699	24%	10%	61%	94%
43	814	26%	16%	52%	94%

Results

- Three eigenvectors exceed the Kaiser criterion of 1.0 (1960)
- Average eigenvalue expected to equal 1.0
- Values greater than 1.0 indicate scores with greater sample variance

PCA 3+
pH, Ca, SO4, Mg
PCA 3-

Acid, Alk, Fe, Al, Mn, Load

PCA Summary

Summary

- PCA1+ (alkaline, low metal, high load)
- PCA1- (high metal, high TDS, low load)
- PCA2+ (high metal)
- PCA2- (high TDS, low metal, high load)
- PCA3+ (alkaline, low TDS, low metal)
- PCA3- (high metal, high flow)

Priority Level

- Level 1 (PCA1-, PCA2+, PCA3-): high metal concentrations
- Level 2 (PCA1+, PCA2-): high metal load or high TDS
- Level 3 (PCA 3+): alkaline, moderate TDS, low metal concentration, low load

Cluster Analysis

Cluster 1 – High metal conc. (10 samples)

Cluster 2 – High TDS (26 samples)

Cluster 3 – Low metal conc., moderate TDS, high flow (5 samples)

Results

- Headwaters:
 - high metal conc.
- Tributaries:
 - high TDS
- Mainstem:
 - low metal, mod. TDS, high flow
- Nonconformity:
 - Mainstem Fe seep
 - Impoundment Fe

Additional Review

Field reconnaissance of "Level 1" identified Fe seeps

Data review of "Level 2" identified high TDS and/or high load

Data review of "Level 3" identified low metal/TDS, high flow

Additional Investigation

- Field Testing Kits
- Groundwater Piezometers

Total Dissolved Solids

Reclamation Techniques for AML

- Grading and drainage
- Material handling plans for "hot" material
 - Disposal of reactive material offsite
 - Encapsulating reactive material onsite
- Active, semi-active, and passive chemical treatment
 - Fully automated treatment facilities
 - Semi-automated reagent delivery with passive techniques
 - Limestone beds, settling ponds, aerobic wetlands

Example Techniques for AML

*Bingmaps.com

Civil & Environmental Consultants, Inc.

Modifications for Restoration

- "Hot" mine spoil identification
- Excavation and sequestration
- Soil amendment
- Aerobic wetland construction ("treatment cells")
- Natural site stabilization / revegetation
- Impermeable barrier installation
- Hydraulic structures for spoil stabilization
- Alluvial fans to reconnect headwaters

Mine Spoil Handling

- Excavate and sequester "hot" material to designated disposal areas
 - Encapsulate with impermeable material
 - Revegetate
 - Construct BMPs for leachate (treatment cells)
- Amend remaining spoil within grading limits
 - Limestone fines (Ag. Lime) and organic compost
 - Alkalinity reduces prevalence of acidophilic, ironoxidizing bacteria
 - Organic compost depletes oxygen available for mineral oxidation

Aerobic Wetlands (Treatment Cells)

Impermeable Barriers

- Onsite clay-rich soil
 - Excavated from nearby pastureland
- Soil/bentonite slurry
 - Mixed onsite with grout-like application technique
- Bentomat or Claymax brand geosynthetic liners
 - Keyed in beyond bankfull

Natural Site Stabilization

Initial Construction

- Introduces oxygenated groundwater
- Increases mineral surface area exposure
- First-flush of recently exposed/oxidized constituents
- Post-Construction
 - Progressive depletion of groundwater oxygen
 - Stabilization of water table
 - Depletion of first-flush mineral concentrations
- Revegetation
 - Aides site stabilization
 - Increased transpiration, reduces groundwater/mineral interaction

Physical Stabilization

Anticipated Outcome

Anticipated Outcome

- Reduced discoloration
- Reduced conductivity
- Increased WV Stream Condition Index (WVSCI) scores
- Increased Stream and Wetland Valuation Metric (SWVM) scores
- Prior Successes Mitigation Banks on AML
 - Southern WV Coalfields (Alluvial Fan)
 - Tennessee Cumberland Plateau

AML Reclamation Literature

- WVDEP (2017) Division of Mining and Reclamation Permit Handbook
- WVDEP (2005) Division of Mining and Reclamation Geologic Handbook
- WVDEP (2001) Division of Mining and Reclamation Quarry Handbook
- WVDEP (1993) Division of Mining and Reclamation Technical Handbook
- WVDEP (1992) Division of Mining and Reclamation Inspection and Enforcement Handbook
- Office of Surface Mining (1980) Coal Mine Operators Handbook
- University of Kentucky (1996) Kentucky Coal Mining Practice Guidelines for Water Quality Management
- Smart, et al. (2015) Assessment of Acid Neutralization Rates from Site Rock for AMD Control
- Sahoo et al. (2013) Current Approaches for Mitigating Acid Mine Drainage
- Gusek (2012) Sulfate-Reducing Bioreactor Design and Operating Issues
- Wilkin, et al. (2008) Contaminant Attenuation Processes at Mine Sites
- Johnson, et al. (2005) Acid Mine Drainage Remediation Options
- Barnhisel et. al. (2000) Reclamation of Drastically Disturbed Lands
- Office of Surface Mining (2000) Handbook for Calculation of Reclamation Bond Amounts
- Rose, et al. (1996) Remediation of Acid Mine Drainage Within Strip Mine Spoil by Sulfate Reduction Using Waste Organic Matter
- Vile, et al. (1992) Alkalinity Generation by Fe(III) Reduction Versus Sulfate Reductions in Wetlands Constructed for AMD Treatment

Questions / Comments

Timothy A. Denicola

Project Manager / Geochemist

Civil & Environmental Consultants, Inc.

600 Marketplace Ave · Suite 200 · Bridgeport, WV 26330

Toll-Free: (855) 488-9539 · Fax: (304) 933-3327

Mobile: 304-838-8475 · <u>http://www.cecinc.com</u>

Email: tdenicola@cecinc.com

