Temporal variability in trace metal removal in vertical flow bioreactors

Julie LaBar and Robert Nairn

Outline

- Vertical flow bioreactors
- Study objectives and site
- Trace metal removal
 - Changes over time
- Products of removal
 - Changes over time
- Conclusions

Vertical flow bioreactors (VFBR)

- May follow oxidation step
 - Net-alkaline
 - Low Fe
 - Circum-neutral pH

• Goals

- Force water vertically through organic substrate
- Create anoxic, reducing conditions
 - Promote bacterial sulfate reduction (BSR)
 - Generate alkalinity through BSR and limestone dissolution
- Remove divalent trace metals as insoluble sulfides

Trace metal removal in VFBR

- Goals of VFBR
 - Generate alkalinity
 - Remove trace metals via sulfide precipitation

Reality = remove trace metals via a variety of mechanisms
Adsorption, carbonate formation, complexation with HA/FA

Study objectives

- Proof of concept field proof of trace metal removal and products
- Evaluate whether overall treatment effectiveness changes over the short term

Determine if removal products change over time

Mayer Ranch Passive Treatment System

Commerce, OK

- First mine drainage treatment of any kind attempted in the Tri-State Mining District
 - Oxidation pond
 - Settling wetlands
 - Vertical flow bioreactors
 - Re-aeration ponds
 - Horizontal flow LS beds
 - Polishing wetland

Mayer Ranch Passive Treatment System

- 2 VFBR in parallel
- 0.5 m organic substrate
 - 45:45:10 spent mushroom compost, wood chips, limestone sand
- 0.5 m high-calcite limestone
- Approximately 760 m²

		ln		Out
	Ν	Median	N	Median
T (°C)	66	19.1	66	17.8
pH (s.u.)	66	6.39	66	6.79
Cond (mS/cm)	66	2.80	66	2.60
DO (mg/L)	66	8.55	66	0.750
ORP (mV)	66	180	66	-90.5
Alkalinity (mg/L as CaCO ₃)	66	145	66	220
Sulfate (mg/L)	52	2250	52	2140
Sulfide (mg/L)	0	-	6	3.21
Fe (mg/L)	35	0.310	34	0.418
Cd (mg/L)	10	0.002	6	0.001
Co (mg/L)	36	0.051	17	0.009
Mn (mg/L)	36	1.36	36	1.21
Ni (mg/L)	36	0.758	35	0.097
Pb (mg/L)	6	0.027	3	0.030
Zn (mg/L)	36	4.83	35	0.019

n general:

Modest sulfate removal

- No apparent iron removal
- Removal of Co and Ni

• A lot of Zn removal

←Fe ←Fi →Zn

Total removal

- By June 2010, the VFBR had removed:
 - 770 g Cd
 - 30 kg Co
 - 1,750 kg Fe
 - 257 kg Mn
 - 428 kg Ni
 - 18 kg Pb
 - 2,950 kg Zn

- By July 2014, the VFBR had removed:
 - 3 kg Cd
 - 110 kg Co
 - 6,400 kg Fe
 - 937 kg Mn
 - 1,550 kg Ni
 - 66 kg Pb
 - 10,700 kg Zn

Substrate sampling

- Samples collected at equidistant points in each VFBR
 - 2010 nine cores
 - 2014 sixteen samples
- Immediately placed in air-tight plastic bags
- Stored at < 4°C (but above freezing)
- 2010 samples dried prior to analyses
 - Potential destruction of carbonate species
- 2014 samples never dried

Sequential extraction scheme

Fraction	Target	Reagents	Procedure	
Exchangeable (+ water soluble)	2010 extractions included a water soluble fraction			
Bound to carbonate	2014 extractions include that are adsorbed to carbonate surfaces	d a labile organic ma	atter fraction peat	
Bound to labile organic matter	Metals that are bound in humic and fulvic acids through complexation	0.1 M Na ₄ P ₂ O ₇ ·10H ₂ O at pH 10	Agitate for 1 hour and repeat	
Bound to Fe/Mn oxides	Fe and Mn oxides and any metals that may be adsorbed to them	0.04 M NH ₂ OH·HCl in 25% (v/v) HOAc	Agitate for 1 hour	
Bound to refractory organic matter and sulfides	Metals that are bound to sulfides and decay-resistant organic matter with low solubility	 3-mL of 0.02 M HNO₃ 30% H₂O₂ adjusted to pH 2 with HNO₃ 3.2 M NH₄OAc in 20% (v/v) HNO₃ and sparged ultrapure water 	Heated to 85±2°C for 5 hours with occasional agitation Agitate for 30 minutes	
Residual	Metals that are bound to primary and secondary minerals, particularly silicates, which typically enter the environment through weathering	Concentrated HNO ₃	Microwave digestion	

2010

2014

Water soluble fraction has been added to exchangeable fraction to provide comparison to 2014 data

Labile organic fraction has been added to organic/sulfide fraction to provide comparison to 2010 data

Zn

Metal	Fraction	PRE	2010	2014
Cd	Exchangeable	-	-	-
	Carbonate	0.04	-	-
	Oxide	0.00	0.02	0.04
	Organic/sulfide	0.34	0.52	0.86
Со	Exchangeable	0.04	2.4	0.14
	Carbonate	0.03	3.4	1.5
	Oxide	0.05	1.0	1.3
	Organic/sulfide	0.79	4.0	69
Fe	Exchangeable	1.2	0.44	-
	Carbonate	111	1.5	130
	Oxide	25	104	410
	Organic/sulfide	2040	2100	6500
Mn	Exchangeable	27	45	61
	Carbonate	76	54	91
	Oxide	2.3	9.9	25
	Organic/sulfide	40	11	81

Metal	Fraction	PRE	2010	2014
Ni	Exchangeable	0.15	43	5.3
	Carbonate	0.03	86	48
	Oxide	0.02	16	47
	Organic/sulfide	3.4	103	1330
Pb	Exchangeable	0.17	-	-
	Carbonate	0.46	-	-
	Oxide	0.01	-	0.58
	Organic/sulfide	5.1	3.1	9.9
Zn	Exchangeable	0.33	16	3.1
	Carbonate	13	160	140
	Oxide	0.19	170	370
	Organic/sulfide	37	2230	13700

Median concentrations (mg/kg)

Metal	Fraction	PRE	2010	2014
Cd	Exchangeable	-	-	-
	Carbonate	0.04	-	-
	Oxide	0.00	0.02	0.04
	Organic/sulfide	0.34	0.52	0.86
Со	Exchangeable	0.04	2.4	0.14
	Carbonate	0.03	3.4	1.5
	Oxide	0.05	1.0	1.3
	Organic/sulfide	0.79	4.0	69
Fe	Exchangeable	1.2	0.44	-
	Carbonate	111	1.5	130
	Oxide	25	104	410
	Organic/sulfide	2040	2100	6500
Mn	Exchangeable	27	45	61
	Carbonate	76	54	91
	Oxide	2.3	9.9	25
	Organic/sulfide	40	11	81

Metal	Fraction	PRE	2010	2014
Ni	Exchangeable	0.15	43	5.3
	Carbonate	0.03	86	48
	Oxide	0.02	16	47
	Organic/sulfide	3.4	103	1330
Pb	Exchangeable	0.17	-	-
	Carbonate	0.46	-	-
	Oxide	0.01	-	0.58
	Organic/sulfide	5.1	3.1	9.9
Zn	Exchangeable	0.33	16	3.1
	Carbonate	13	160	140
	Oxide	0.19	170	370
	Organic/sulfide	37	2230	13700

Median concentrations (mg/kg)

Metal	Fraction	PRE	2010	2014
Cd	Exchangeable	-	-	-
	Carbonate	0.04	-	-
	Oxide	0.00	0.02	0.04
	Organic/sulfide	0.34	0.52	0.86
Со	Exchangeable	0.04	2.4	0.14
	Carbonate	0.03	3.4	1.5
	Oxide	0.05	1.0	1.3
	Organic/sulfide	0.79	4.0	69
Fe	Exchangeable	1.2	0.44	-
	Carbonate	111	1.5	130
	Oxide	25	104	410
	Organic/sulfide	2040	2100	6500
Mn	Exchangeable	27	45	61
	Carbonate	76	54	91
	Oxide	2.3	9.9	25
	Organic/sulfide	40	11	81

Metal	Fraction	PRE	2010	2014
Ni	Exchangeable	0.15	43	5.3
	Carbonate	0.03	86	48
	Oxide	0.02	16	47
	Organic/sulfide	3.4	103	1330
Pb	Exchangeable	0.17	-	-
	Carbonate	0.46	-	-
	Oxide	0.01	-	0.58
	Organic/sulfide	5.1	3.1	9.9
Zn	Exchangeable	0.33	16	3.1
	Carbonate	13	160	140
	Oxide	0.19	170	370
	Organic/sulfide	37	2230	13700

Median concentrations (mg/kg)

Conclusions

- As expected, adsorption played an important role in trace metal removal in system's youth
 - All metals but Mn were released to some extent between 2010 and 2014
 - Mn continued to be adsorbed between 2010 and 2014
- Carbonate precipitation and/or sorption plays an important role in Mn removal
 - Viable route for Fe and Zn removal, but less important than sulfide formation
- Metals removed as carbonates may be remobilized and removed via another pathway
- Being bound up in organic matter provides some removal, but is likely temporary

Acknowledgements

- Private Landowners
- USEPA Agreements FY04 104(b)(3) X7-97682001-0 and R-829423-01-0
- US Dept. of Education GAANN Program
- ASMR PhD Research Grant 2011
- ASMR Memorial Scholarship, PhD Level 2012
- Grand River Dam Authority Graduate Fellowship
- OU CREW
- Saint Francis University

Questions?

