Relationship between water quality and stream recovery

DR. NATALIE KRUSE DANIELS

OHIO UNIVERSITY

Little Raccoon Creek

LRC Biological Recovery Over Time

Table 2 Little Raccoon Creek MAIS Regressions, with location of sample site indicated by river kilometer (RKM) (modified from Bowman 2011)

RKM	2005	2006	2007	2008	2009	2010	2011	Trend	No. of years	p value
39.2	8	10	11	п	9	9	13	NC	7	0.246
35.8	8	10	10	9	10	10	10	NC	7	0.165
31.4	-	7		9	11	12	13	IMP	6	< 0.001
30.1	14	9	12	9	13	11	11	NC	7	0.726
20.4	3	11	13	13	14	14	14	IMP	7	0.041
1.9	14	14	13	15	17	16	16	IMP	7	0.046

NC no change, IMP improved

Table 2 Little Raccoon Creek MAIS Regressions, with location of sample site indicated by river kilometer (RKM) (modified from Bowman 2011)

RKM	2005	2006	2007	2008	2009	2010	2011	Trend	No. of years	<i>p</i> valu
39.2	8	10	11	11	9	9	13	NC	7	0.246
35.8	8	10	10	9	10	10	10	NC	7	0.165
31.4	-	7		9	11	12	13	IMP	6	<0.00
30.1	14	9	12	9	13	11	11	NC	7	0.726
20.4	3	11	13	13	14	14	14	IMP	7	0.041
1.9	14	14	13	15	17	16	16	IMP	7	0.046

NC no change, IMP improved

Percent of Measurements Below pH 6.5

T

2000.0

V

2002.5

Underwood et al 2014

Table 2 Little Raccoon Creek MAIS Regressions, with location of sample site indicated by river kilometer (RKM) (modified from Bowman 2011)

Underwood et al 2014

Hewett Fork Headwaters of R.C.

Water Quality Improvement

Kruse et al 2013

Metal Flux

Kruse et al 2013

Sediment Chemistry

Kruse et al 2013

How does this conceptual model test across watersheds?

Exploring Patterns Across Watersheds

62 sites across a gradient of impairment

All have aqueous and sediment chemistry measurements and over 5 years of macroinvertebrate assessment

Aqueous Chemistry vs. Macroinvertebrates

Statistically significant relationships between Fe, Al, Mn, and Acidity with MAIS (Macroinvertebrate Aggregrate Index for Streams) metric

Water quality parameters with significant differences between zones of recovery:

Parameters: 2014 - 2015	pH field	Conduct	Acidity	Alkalinity	ORP	TDS	TSS	Sulfate	Al	Ca	К	Mg	Mn	Fe	Na
P-value (Significance):	0.0059	0.0215	0.02629	0.06037	0.2499	0.0093	2.744e-05	0.000547	3.451e-	1.359e-	0.2051	0.0339	1.256e-	0.00814	0.005
								5	07	05			06	7	826
Different in 4 zones:	differs	differs	differs			differs	differs	differs	differs	differs		differs	differs	differs	differs
Similar in 4 zones:				same	same						same				

Creek 🔴 East Branch 🥮 Hewett Fork 🛑 Little Raccoon Creek 🔵 Monday Creek 🔵 Raccoon Creek 🔵 Sunday Creek 🛑 Thomas Fork

Creek 🛑 East Branch 🥮 Hewett Fork 🌑 Little Raccoon Creek 🔵 Monday Creek 🔵 Raccoon Creek 🔵 Sunday Creek 🌍 Thomas Fork

Sediment Chemistry vs. Macroinvertebrates

Statistically significant relationships between Fe, As, Mn, Cu, and Ca with MAIS (Macroinvertebrate Aggregrate Index for Streams) metric

Mn, Cu, Ca regressions are nearly flat, so the relationship isn't suggestive

				<i>,</i> ,			U							,		
Parameters	Al	Ba	Ca	Со	Cr	Cu	Fe	K	Mg	Mn	Na	Pb	Ni	Si	Sr	Zn
P-value:	0.000129 3	0.000242 8	0.000898 5	1.64e- 05	1.249e- 05	7.05e- 06	0.000101 1	0.000494 8	5.668e -05	9.547e -05	0.0160 8	3.032e -05	3.642e -05	0.000583 7	0.00013 9	0.000185 2
Different in 4 zone:	differs	differs	differs	differs	differs	differs	differs	differs	differs	differs	differs	differs	differs	differs	differs	differs
Similar in 4 zone:	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Sediment chemistry parameters with significant differences between zones of recovery:

Metal attenuation remains a significant factor in biological recovery when we test our model against a larger dataset.

Variations Downstream of Similar Treatment Systems

Lime dosers in:

Hewett Fork, Raccoon Creek

Thomas Fork, Leading Creek

West Branch Sunday Creek

Jobs Hollow, Monday Creek

Bedu-Mensah 2015

Statistically Significant Parameter Relationships

Spearman Correlations Coefficient (R) Matrix of MAIS Scores, Field Parameters and Stream Chemistry

	(c-1 1 1	1			1	×
- 1	Shoded	boyec	1ndioote	cioniticont	oorrelatio	Marce 1
	Shaucu	UUACS	mulcale	Significant	conclaire	JIIST

	MAIS	pН	Conductivity	Sulfate	Acidity	Alkalinity	Fe	Mn	Al
MAIS									
pН	0.232								
Conductivity	-0.307	0.151							
Sulfate	-0.452	0.034	0.765						
Acidity	-0.374	-0.458	0.177	0.195					
Alkalinity	0.24	0.504	0.069	-0.201	-0.415				
Fe	0.511	0.041	0.093	0.307	0.019	-0.181			
Mn	0.682	-0.204	0.424	0.589	0.356	-0.473	0.571		_
Al	0.463	0.015	0.256	0.425	0.037	-0.149	0.809	0.581	•

Poor Recovery

Bedu-Mensah 2015

Varied Recovery (between years)

Meeting Biological Targets

Bedu-Mensah 2015

Supports metal deposition as a key factor in biological recovery.

But what about pulses of poor water quality?

Episodic Acidification/ Poor Water Quality

Martin 2017

Martin 2017

Martin 2017

Suggests that variability and episodic poor water quality may play a role in recovery.

Summary and Conclusions

Thank you

Appalachian Watershed Research Group

Jen Bowman

Kelly Johnson

Morgan Vis

Dina Lopez

Amy Mackey

Environmental Studies Students Henry Bedu-Mensah Saruul Damdimbal Zeb Martin Bruce Underwood VOINOVICH SCHOOL of Leadership and Public Affairs

