

OSMRE 2017 ABANDONED MINE LAND RECLAMATION AWARDS

NATIONAL AWARD WINNER

THE HULING BRANCH **AML RECLAMATION/ATV** RECREATION

&WATERSHED IMPROVEMENT PROJECT

Tom Wolf, Governor

Patrick McDonnell, Secretary

Abandoned Mine Land Reclamation Awards

A A A 🖪 🖨

OSMRE first recognized outstanding abandoned mine land reclamation and exemplary reclamation techniques in 1992, when it started the annual Abandoned Mine Land (AML) Reclamation Awards Program. The program mirrors one of the objectives of the Surface Mining Control and Reclamation Act of 1977 to ensure that land mined for coal would be restored to beneficial use as part of the mining process, and that lands abandoned without reclamation prior to the law would be reclaimed.

AWARD ELIGIBILITY

AML projects funded wholly or in part and completed by approved state or tribal programs are eligible for an award, including coal, non-coal, high-priority, and emergency projects. Abandoned mine reclamation completed by citizen groups or other non-state/nontribal organizations are not eligible for these awards. One project may be submitted by each state or tribal program each year.

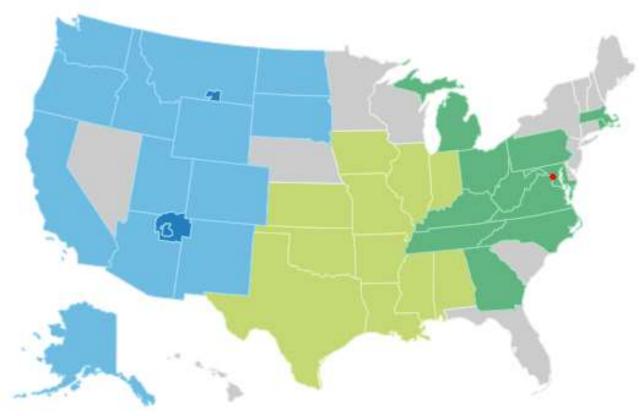
Award Winners

OSMRE has traditionally given five awards:

- one national award
- one national award for small projects (restricted to projects receiving less than \$1 million in a state or tribe that receives less than \$6 million annually in AML funding)
- one award in each of OSMRE's three regions

Any entry is eligible for the national award. Eligible voters and organizations eligible to submit nominations are listed below.

View previous AML Reclamation Award Winners.



OSMRE Regional Map

Organizations Eligible to Submit Nominations - 27 Total

Appalachian Region - 7

- 1 Pennsylvania Bureau of Abandoned Mine Reclamation
- 2 West Virginia Office of Abandoned Mine Lands and Reclamation
- 3 Virginia Division of Mine Land Reclamation
- 4 Tennessee Abandoned Mine Land Program
- 5 Ohio Division of Mines and Reclamation
- 6 Maryland Abandoned Mine Lands Section
- 7 Kentucky Division of Abandoned Mine Lands

Mid	Mid-Continent Region - 10		
8	Alabama Mining and Reclamation		
9	Arkansas Dept. of Pollution Control and Ecology		
10	Illinois Abandoned Mine Land Reclamation Division		
11	Texas Surface Mining and Reclamation Division		
12	Oklahoma AML Program		
13	Louisiana Injection and Mining Division		
14	Kansas Surface Mining Section		
15	Missouri AML Section Land Reclamation Program		
16	Indiana Division of Reclamation		
17	Iowa AML Program		

Western Region, Tribes Included - 10		
18	Wyoming AML Program	
19	Utah Abandoned Mine Reclamation Program	
20	North Dakota AML Division	
21	New Mexico Mining and Minerals Division	
22	Montana Abandoned Mine Reclamation Bureau	
23	Colorado Office of Active and Inactive Mines	
24	Alaska Division of Mining	
25	Navajo Nation Abandoned Mine Land Reclamation Department	
26	Hopi Tribe Abandoned Mine Land Program	
27	Crow Tribe AML Program	

2017 JUDGING STANDARDS

- 1. Innovative use of current technology (12 pts.)
- 2. Difficulty of Achieving Reclamation under Existing Conditions (17 pts.)
 - a. Special and unique considerations (8)
 - b. On-site difficulty of the project (9)
 - c. Project start and completion dates and construction costs
 - d. Names of organizations responsible for the reclamation, including contractors
 - e. Date submitted
- 3. On-Site Effectiveness (23 pts.)
 - a. Effective/innovative use of technology (8)
 - b. Landscape conforms to the natural environment (8)
 - c. Elimination of significant health or safety problems (7)
- 4. Funding (12 pts.)
 - a. Effective use of funds (6)
 - b. Leveraging use of partners for funding or technology (6)
- 5. Benefits to the Community (18 pts.)
 - a. Community support for the project (6)
 - b. Long-term benefits to the community (12)
- 6. Surface Mining Control and Reclamation Act (18 pts.)
 - a. Exceeds the spirit and intent of SMCRA (10)
 - b. Increased public awareness of SMCRA (4)
 - c. Transferability to other AML projects (4)

Eligible Voters - 43 Total

OSMRE - 16

OSIMINE	10		
1	Chief, OSMRE Alton Field Division		
2	Chief, OSMRE Denver Field Division		
3	Chief, OSMRE Federal Reclamation Program Division		
4	Chief, OSMRE Pittsburgh Field Division		
5	Regional Director, OSMRE Appalachian Region		
6	Regional Director, OSMRE Mid-Continent Region		
7	Regional Director, OSMRE Western Region		
8	Field Office Director, OSMRE Tulsa Field Office		
9	Field Office Director, OSMRE Wyoming Field Office		
10	Field Office Director, OSMRE Birmingham Field Office		
11	Field Office Director, OSMRE Casper Field Office		
12	Field Office Director, OSMRE Charleston Field Office		
13	Field Office Director, OSMRE Knoxville Field Office		
14	Manager, OSMRE Olympia Office		
15	Environmental Specialist, OSMRE Pittsburgh Field Division		
16	AML Program Specialist, OSMRE Lexington Field Office		

Appalachian Region - 7

17	Director, Pennsylvania Bureau of Abandoned Mine Rec.		
18	Chief, West Virginia Office of Abandoned Mine Lands and Rec.		
19	AML Manager, Virginia Division of Mined Land Reclamation		
20	Director, Tennessee AML Program		
21	Natural Resources Administrator, Ohio Div. of Mines and Rec.		
22	Supervisor, Maryland Abandoned Mine Lands Section		
23	Director, Kentucky Division of Abandoned Mine Lands		

Mid-Continent Region - 10			
24	Director, Alabama Mining and Reclamation Division		
25	Chief, Surface Mining and Reclamation Division, Arkansas		
26	Manager, Illinois Abandoned Mine Land Reclamation Division		
27	Director, Texas Surface Mining and Reclamation Division		
28	Director, Oklahoma AML Program		
29	Director, Injection and Mining Division, DNR, Louisiana		
30	Mining Section Chief, Kansas Surface Mining Section		
31	Chief, Missouri AML Section Land Reclamation Program		
32	Assistant Director Restoration, Indiana Division of Rec.		
33	Environmental Specialist – Senior, Div. of Soil Conserv., Iowa		

Western Region, Tribes Included - 10				
34	Director, Wyoming AML Program			
35	Chief, Utah Abandoned Mine Reclamation Program			
36	Director, North Dakota AML Division			
37	AML Program Manager, New Mexico Mining and Minerals Div.			
38	Chief, Montana Abandoned Mine Reclamation Bureau			
39	Director, Colorado Office of Active and Inactive Mines			
40	AML Program Coordinator, Alaska Division of Mining			
41	Director, Navajo Nation Abandoned Mine Land Rec. Depart.			
42	Manager, Hopi Tribe Abandoned Mine Land Program			
43	Director, Crow Tribe AML Program			

NATIONAL ASSOCIATION

40

allandoned Mine Land Sectamation

NATIONAL AWARD

Pennsylvania Department of Environmental Protection

Huting Branch AML Reclamation / ATV Recreation and Watershed Improvement

Application 25, DVIT

Made A Terres

OSMRE 2017 ABANDONED MINE LAND RECLAMATION AWARDS

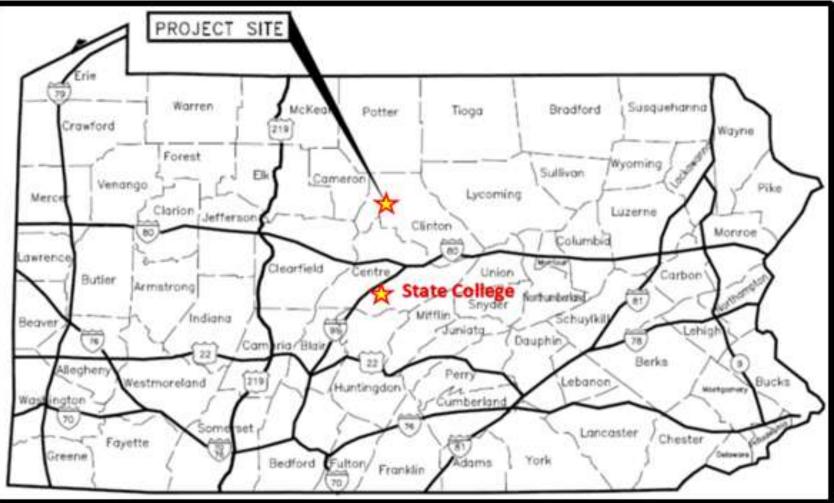
NATIONAL AWARD WINNER

THE HULING BRANCH **AML RECLAMATION/ATV** RECREATION **&WATERSHED IMPROVEMENT** PROJECT

Tom Wolf, Governor

Patrick McDonnell, Secretary

The Huling Branch AML Reclamation/ATV Recreation & Watershed Improvement Project



2017 OSMRE Award Nomination

Project Location

- Problem Area 6672 (PA 6672) in Sproul State Forest
- Noyes and Leidy Townships, Clinton County, Pennsylvania

Project Team:

- Director Eric E. Cavazza, P.E., (ecavazza@pa.gov)
- Environmental Program Manager Dean R. Baker, P.E.
- Clerical Tammy Cree & Carol Layo
- Construction Bill A. Dadamo, P.E. & Roger L. Rummel, P.E.
- Inspection Ronald R. Lindemuth & Patrick R. Thompson
- NPDES Permitting Craig R. Treese, P.E. & Patrick M. Webb, P.E.
- Design Thomas C. Malesky, P.E. & Stephen Fisanick, III, P.E.
- Development Patrick M. Webb, P.E. & Richard L. Beam, P.G.
- Investigation Martin J. Hughes, P.E.

Pennsylvania Department of Environmental Protection Bureau of Abandoned Mine Reclamation, Cambria District Office Ebensburg, PA, 15931 814-472-1800

Primary Project Partners:

- Office of Surface Mining Reclamation and Enforcement
- PA DEP, Bureau of Abandoned Mine Reclamation
- PA DCNR, Bureau of Forestry
- PA DEP, Moshannon District Mining Office
- American Chestnut Foundation of Asheville, North Carolina
- Michael Hanna, PA State Representative, 76th Legislative District
- Brandywine Enduro Riders (BER)
- American Motorcyclist Association (AMA)
- National Enduro Promotions Group (NEPG)
- Kettle Creek Watershed Association

AML Problems:

- 4 Priority 2 (P2) Dangerous Highwalls (DH) at a combined length of over 6,000 L.F.
 - ◆ 2,800 L.F.
 - ◆ 1,500 L.F.
 - ◆ 1,200 L.F.
 - ◆ 500 L.F.
 - Unauthorized use of the AML site by ATV riders to areas off of PA DCNR's designated Whiskey Springs ATV trail within the Sproul State Forest
 - Rattlesnake National Enduro Championship Series
- 103 Acres of Priority 3 (P3) Acid Forming Spoil Area (SA)
- Multiple P3 Water Area (WA) problems from:
 - Acidic Deep Mine Drainage (AMD) Discharges
 - Acidic Mine Seeps
 - Acidic Buried Coal Refuse and Acidic Surface Mine Spoil
- P3 Equipment/Facility (EF)
- P3 Collapsed Mine Opening (MO)

- Project Start and Completion Dates:
 - September 9, 2013 to December 8, 2015
- Construction Costs:

Huling Branch AML Reclamation /ATV Recreation & Watershed Improvement Project				
OSMRE Title IV Health & Safety Funds	OSMRE AMD Set- Aside Funds	PA State Growing Greener Funds	Project Total Cost	
\$7,352,587	\$2,000,000	\$1,199,591	\$10,552,178	
69.7%	19.0%	11 20/		
88.	7%	11.3%		

Leveraging – Use of Partners for Funding or Technology:
 – A Multi-Project Health & Safety (P2) and AMD (P3) Approach

Funding Summary Table of the Twomile Run Subwatershed AML & AMD Projects (11 completed since 2000)				
Funding Source Funding Percent				
OSMRE	OSMRE Title IV Health & Safety Funds	54.70%		
Funds	OSMRE AMD Set-Aside Funds	19.83%	76.39%	
runus	Watershed Cooperative Agreement Program	1.86%		
	Pennsylvania State Growing Gre Funds	20.57%		
Other	Foundation of Pennsylvania Watersheds		1.50%	
Source	e Richard King Mellon Foundation			
Funds	United States Army Corps of Engineers		0.41%	
	National Fish & Wildlife Foundation		0.39%	
	Stream Restoration Incorporated		0.09%	

Contractors:


- General L.R. Costanzo Company Inc., Scranton, PA
- Major Berner Construction, Inc., Gap, PA
- Material Transport Confer Trucking Inc., Bellefonte, PA
- Tree Planting Ron Rowles Energy, Curwensville, PA

AML Problems:

- 4 Priority 2 (P2) Dangerous Highwalls (DH) at a combined length of over 6,000 L.F.
 - ◆ 2,800 L.F.
 - ◆ 1,500 L.F.
 - ◆ 1,200 L.F.
 - ◆ 500 L.F.
 - Unauthorized use of the AML site by ATV riders to areas off of PA DCNR's designated Whiskey Springs ATV trail within the Sproul State Forest
 - Rattlesnake National Enduro Championship Series
- 103 Acres of Priority 3 (P3) Acid Forming Spoil Area (SA)
- Multiple P3 Water Area (WA) problems from:
 - Acidic Deep Mine Drainage (AMD) Discharges
 - Acidic Mine Seeps
 - Acidic Buried Coal Refuse and Acidic Surface Mine Spoil
- P3 Equipment/Facility (EF)
- P3 Collapsed Mine Opening (MO)

Mining History:

- Underground mining of the Lower Kittanning Coal Seam
- By Kettle Creek Coal Company, Bitumen, PA
 - ◆ 1900s to 1945

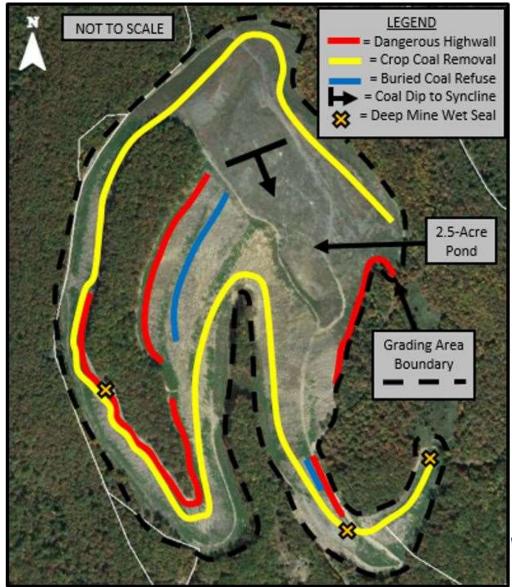
Mining History:

- Surface mining of the Lower Kittanning Coal Seam
- By D.G. Wertz and Richmont Coal Companies
 - ♦ 1950s to 1967

AML Problems:

- 4 Priority 2 (P2) Dangerous Highwalls (DH) at a combined length of over 6,000 L.F.
 - ◆ 2,800 L.F.
 - ◆ 1,500 L.F.
 - ◆ 1,200 L.F.
 - ◆ 500 L.F.
 - Unauthorized use of the AML site by ATV riders to areas off of PA DCNR's designated Whiskey Springs ATV trail within the Sproul State Forest
 - Rattlesnake National Enduro Championship Series
- 103 Acres of Priority 3 (P3) Acid Forming Spoil Area (SA)
- Multiple P3 Water Area (WA) problems from:
 - Acidic Deep Mine Drainage (AMD) Discharges
 - Acidic Mine Seeps
 - Acidic Buried Coal Refuse and Acidic Surface Mine Spoil
- P3 Equipment/Facility (EF)
- P3 Collapsed Mine Opening (MO)

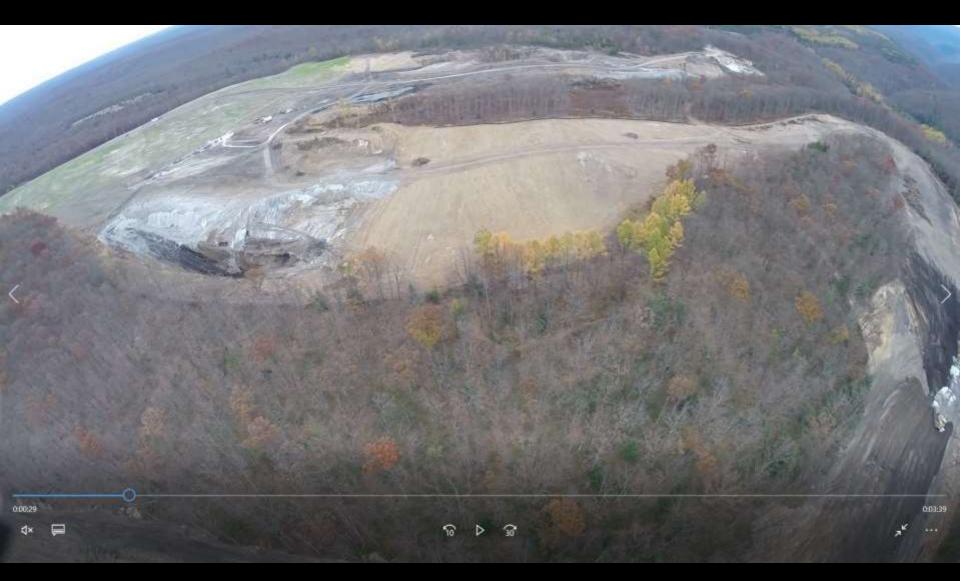
- Difficulty of Achieving Reclamation Under Existing Conditions:
 - Could the 2012 Coal Market support an Active Mine Permit?
 - Could the size of the site be reclaimed as a Government Financed Construction Contract (GFCC)?
 - Brutally record breaking cold winters during 2 year contract
 - Deadly Timber Rattlesnake
 - Pennsylvania State Protected Special Species of Concern
 - Contractor had to be careful NOT to harm the snake
 - At the same time the contractor had to protect themselves from not be injured by the snake
 - 2.5 miles of Winter Road Maintenance & Safety,
 - ◆ 350,000 tons of materials transported to and from the site
 - Forced to night time hauling ONLY during late winter and early spring to maintain haul road system
 - Use of satellite phones
 - Maintain adequate communications
 - Ensure a safe and effective worksite

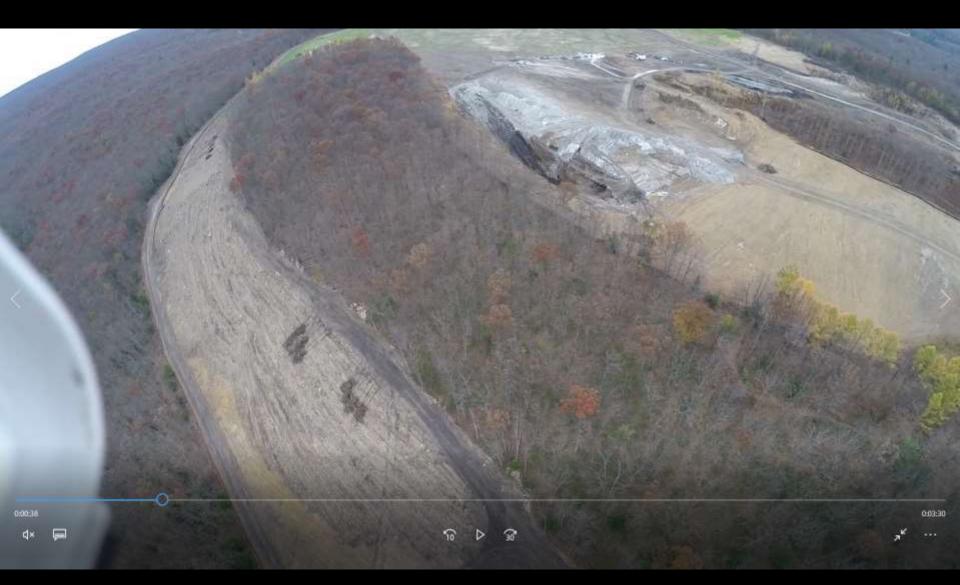


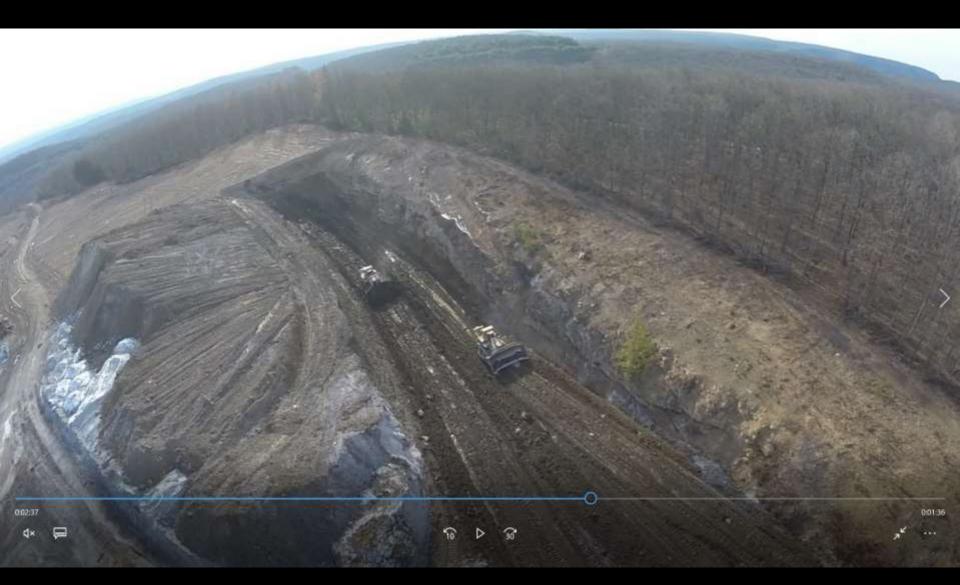
3 Primary Project Concerns/Objectives:

- 1st Eliminate P2 DH Conditions of over 6,000 L.F.
 - Intense site visitation due to the unauthorized use of the AML site by ATV riders to areas off of PA DCNR's designated Whiskey Springs ATV trail within the Sproul State Forest
 - Whiskey Springs ATV trail is 50 miles long, 3.6 miles within project area
 - ♦ 40 acre ATV play area
 - Numerous accidents, several of which required life flight helicopter
 - Reforestation Initiative of Sproul State Forest
- 2nd Maintain & Establish 3.6 miles of ATV trail
 - ATV trail supported recreational use by visitors of Sproul State Forest
 - Portions of the ATV trail used for the annual Rattlesnake National Enduro
- 3rd Reduce site AMD impacts on both surface and groundwater
 - AMD Source Remediation through Alkaline Addition placement
 - Removal and or special handling of acid forming materials
 - Hydrologic controls and identification

The Reclamation Plan:


Overall Items of Work:


- 41,300 tons of Acid Forming Materials Removed
 - 36,200 tons of Lower Kittanning Crop Coal
 - 5,100 tons of Buried Coal Refuse
- 3,000 linear feet of Subsurface Pipe Drains Installed
- 8,000 linear feet of Rock Underdrain Installed
- 310,000 tons of Alkaline Addition Materials
 - Pit Floor Lining 1,800 tons per acre rate
 - Blended with Spoil Area materials Variable rate
 - ♦ 3,000 ton per acre "Final" Alkaline Addition rate
- 787,000 cubic yards of Spoil Area grading
- 48,150 mixed Tree Seedlings, +100 American Chestnut Seedlings
- 2.5 acre E&SC shallow pond left to enhance wildlife habitat
- 3.6 miles of trail
 - Rehabilitated and maintained construction site access/ATV trail restored



During-Construction Conditions:

- 3 Primary Project Concerns/Objectives:
 - 1st Eliminate P2 DH Conditions of over 6,000 L.F.
 - Intense site visitation due to the unauthorized use of the AML site by ATV riders to areas off of PA DCNR's designated Whiskey Springs ATV trail within the Sproul State Forest
 - Whiskey Springs ATV trail is 50 miles long, 3.6 miles within project area
 - 40 acre ATV play area
 - Numerous accidents, several of which required life flight helicopter
 - Reforestation Initiative of Sproul State Forest
 - 2nd Maintain & Establish 3.6 miles of ATV trail
 - ◆ ATV trail supported recreational use by visitors of Sproul State Forest
 - Portions of the ATV trail used for the annual National Rattlesnake Enduro
 - 3rd Reduce site AMD impacts on both surface and groundwater
 - AMD Source Remediation through Alkaline Addition placement
 - Removal and or special handling of acid forming materials
 - Hydrologic controls and identification

 The Huling Branch AML Reclamation Project was an AML Pilot Project - Before the Pilot Program's creation

Long-Term Benefits to the Community & Their Support:

- Increased Tourism for:
- Safe Use of the Whiskey Springs ATV Trail in Sproul State Forest
- Unauthorized trail use through P2 DHs now removed
- Annual Rattlesnake National Enduro Race
- Watershed Improvement for recreational fishing

3. Kettle Creek Inn at Westport

mig 00.4 of mis 00.8 years reprove the 4.00 p.m.

ars no uppo to burgan Agino un

SINCU

TE AVE ASAU I

SILETI DAVIETTI ATTI NO

	Public teephonee are available at the follower Campi 1. Kettle Creek State Park (at lower Campi 2. Rainto's Store at Tamarack
2\0-352-6004	(ettie Creek State Park-
210-126-6000	Solice Police
116	Cilintan County Control Center (Look Haven)
210-353-1000	(m.q.00:4 tot.nr.s.00:8 years)) (ovoriet) Medical Center (Renovo)
1109-626-019	(nwathink) somo tottaid tasva? static iuonq2
	EMERGENCY NUMBERS

An overhight stay in the VIV area requires a camping permit. To obtain a camping permit call, write or stop in at the District Office during weekday office.

beaR silv owT bne ronerid priluit to natoereant ert 2.

some of mountain laurel which bloom during June.

reare sign in frames and you enjoy area.

Limited partiting is also available at other access points around the trail. the other located at the Intersection of the Boyer Road and the Two-Mile Road.

T. "Whiskey Springs," where an old woods road intersects Kettle Creek Road between Weetport and Kettle Creek State Park.

, There is two main particing areas, one located near marker post #36 on the map.

ATV Tail. Respectifie privilege of others to enjoy their form of recreation by remaining

Europhical area of the second of the second

bebunitation need event activity is several visital have been levering about bio

baitaleyer of unvegetated strip mines, stripped areas that have been revegetated with the strain of different for the volume of the second the second the second the second the second the second s

E rithw uny eblyong at benglaeb need acritil. Instary? IterT VTA no no fleanuny youn3

V elcome to the Whinkey Springs ATV Truil on the Sproul State Forest

SPROUL STATE FOREST

ALL-TERRAIN VEHICLE TRAIL

LOCATED IN CLINTON COUNTY

COMMONWEALTH OF PENNSYLVANIA

DEPARTMENT OF CONSERVATION AND NATURAL RESOURCES

BUREAU OF FORESTRY

WHISKEY SPRINGS

Be observant and you may see some of the many species of animals that roam

ne proteolori angla eea uoy enerwis VTA of nego YJNO ai brist taarof elista redmemeri

ClintonCounty Control may be contacted for emergency services

Or drop in at the office located along Route 120 at Shintzwn, 3 miles west of Renovo, uorensbar 1109-EZ6 (D/G) 12776 AR JOVORISH DEOF OVORAR T&121 Shruk State Forest District DCNR, Bureau of Foreetry camed by the operator. at talesseld, led edition of more than a sequence so chemics with us with noted and registered with DCNR's ATV Registration Section. AP (except trace read exclusively as a family or business vehicle) 3. Before the gate on Shintown Run Road.

Kedo pue jo evene eq

aVTA 101 belanglash

aVTA of beacto

WELVIA SYD

steld notestager a to yalqab regord ant aeruper notestageR lareneo A9 A .S

of been upy tert anotelupeR bris wisJ VTA ent ni ameti ent to wet is anis priviolot

The ATV Law is contained in Chapter 77 of the Pennsylvania Vehicle Code. The

manth not beingleeb at elainev entraeeinu , VTA huny no aregneeaacq ymco Xon oQ.B

It VTA herd eau of pribrietin brie primwo athebiaen sinevityarine9 .1

appropriate the rights of others who use State Foreit and Stary on traits a spropriate the right of the state of the state

ni rigis bris melays yobud arti esu bluoris mebri VTA ,eidissoq reveneritiv.č

scars prinsing ton yd hoga wyg evreears. aVTA ot beach are scars

listuden brie bliw brie aserie beineid to bebees ywen as rous aserie nisheo.3

bris anothetuge. The aerual teario? etails ye ebide bris roth tellimet emoced. I

For a safe and onjoyable on perience, please doey the followingrul on

The

ATVenturer's Pledge

· I will isem all the mechanical controls and safety devices of my ATV by reading the owner's manual and I will sheck them each time before I ride.

· I will wear a helmet at all times and other protective clothing autiable to

· I will only ride my ATV off-road, and will not ride on public roads or paved

· I will only lend my ATV to someone I have personally instructed in its safe.

I will ask an instructor or qualified ridar to teach me proper riding skills

I will respect the laws when I ride and I will honor the rules when I ride.

· I will be courteous to other riders and persons by offering right-of-way

Every affort has been made to insure the accuracy of the map on the reverse

side. Because of last minute changes and possible errors in reporting, the map

THINK SAFETY

ACT SAFELY

I will not modify the ATV exhaust system to create more noise.

· I will not littler the area nor damage plant life where I ride.

and I will practice until my skills are well developed before entering an

I will not let young riders or inexperienced riders go ATVentering.

the anvironment when I ride.

· Twill not carry passangers on my ATV.

· I will not use alcohol or other drugs when I side.

· I will rids in the company of others, never alone.

and respecting areas that are posted.

aboutd not be considered infailible.

Revised 4/22/16

STATE PA

Westport

surfaces

unsupervised.

and appropriate use.

unfamiliar area.

VTA ne priterago nartw samit lie la noticatorig ava brie tamian a teaW.A

6.8e informed of local weather torecasts. Dress and equip yourself

and out where a register has been provided.

2.Do not disturb or pursue wildlife with your vehicle

- breo electrificeo notientalgen e bres VTA enti to itade enti no restota notienique bre

- 3. With a Limited Registration (no tee and no expiration sticker) the ATV can be

- used only on the property of the owner.

- 4. ATVs owned by non-residents covered by a valid registration from their home
- A9 6 aronort stata amort rient if A9 ni relatigen-en dt been ton ob stata

- The baterage are yeed name a VTA lie not ballupar at agenaves sometuari yhideu. .2
- of the property of the owner. Proof of this coverage should be carried by the
- Viscoffbage sears priblin bins alient of backrister al bins) transf alies no priblin VTA .8 inte edo
- sau VTA not beterpiseb
- endred yeahing with more needed in the abnest latent states no attent VTA betangleed. T

pagiunaq pointe and possess a safety certificate before beinged is eleiqnoo taum ege to ateey ôf teohu tud yebrihid ritô hert taeq anostel .11. abriel oliduq no VTA ne elenego ton yem ege to ateey 8 rebru anoare9. Dt

Sproul State Forest

Whiskey Springs ATV Trail System

or Trat

SCALE

1/2

ALL ATV'S MUST BE REGISTERED AND INSURED

ONLY ATV'S WITH THREE OR MORE WHEELS ARE PERMITTED

Contours Are on 100 Ft. Intervals

MOTORCYCLES AND TRAILRIKES ARE NOT PERMITTED

STAY ON DESIGNATED TRAILS

SEE BACK OF MAP

FOR ENLARGEMENT

Molow Trutt

Department of Conservation and Natural Resources

Bureau of Forestry

State Forest

State Park

Natural Area

Open Area

REPTILI CAREE STATE PARS

ATV Trail (Easy)

Public Phone

Vista Camping

E.

P

ATV Trail (More Difficult)

ATV Trail (Most Difficult)

Parking (Day Use Only) Restrooms (Available June

Trail (Closed to ATV's)

Driveable Trail

(Closed to ATVs)

(Closed to ATV's)

Gate

---- Pipeline

Administrative Road

Through September Only) Donut Hole State Forest Hiking

Other Trail (Closed to ATV's) Road (Closed to ATV's)

ATV Trail Numbered Intersection

Hazard Area

50 Miles of Summer and Win

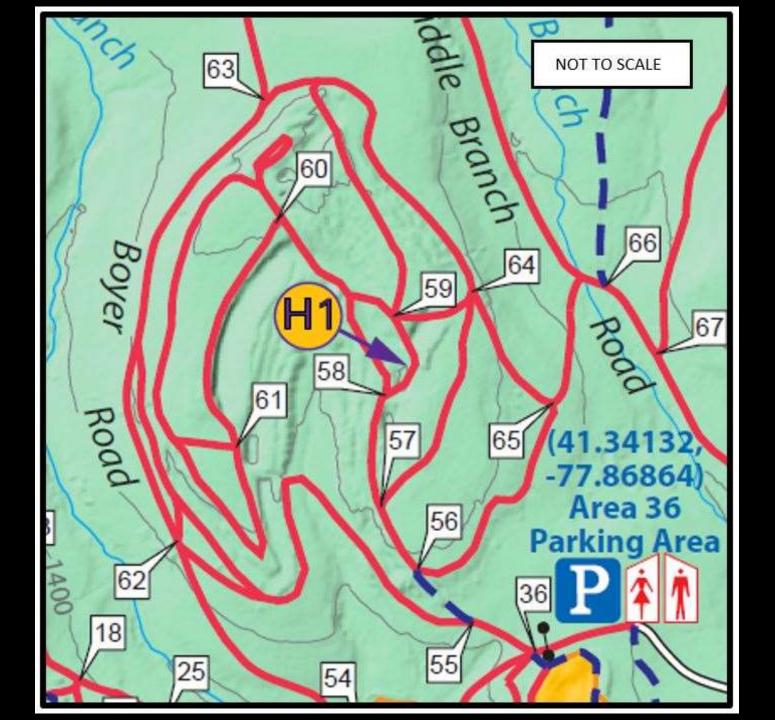
Helipad (Decimal Degree Lat. Long.) (41.34695, -77.87274)

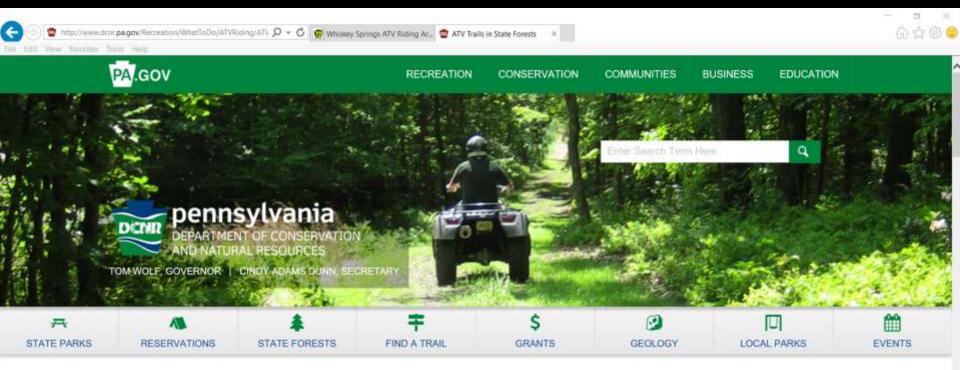
Helipad (Decimal Degree Lat. Long.) (41.34463, -77,88703)

Helipad (Decimal Degree Lat, Long.)

(41.38915, -77.88429)

- aliert VTA emo2, trednedge? ni breateew luft isel erd riguoniti you lehomeM.


12. Age 8 or 9 year old operators are restricted to an engine size of 70cc or less


- anotitionco audonissent to trava anti in yriticiat anti to tila to tradado y ram bus lied and not explain a material Forester is responsible for the truth and produmed anotherics, i find itimin mego mismer bins more as the medicer

13. Discard all littler in waste containers provided or take it out with you.

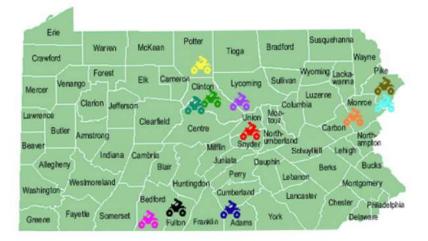
aliet briel oliduq yns no VTA ne etereqo ot

- . Defidining al hermem thegigen to asertices is ni VTA manner is prohibited. . 9

DCNR > Recreation > What to Do > ATV Riding > ATV Trails in State Forests

ATV TRAILS IN STATE FORESTS

All state forest ATV trails are designated with signs. Stay on the marked trail. Roads for joint use by ATV's and vehicular traffic are marked with caution signs at all road junctions. All municipal and state-owned roadways open to ATV use are designated as such with the following sign:


· ATV operation for people with disabilities

ATV TRAILS IN STATE FORESTS

All state forest ATV trails are designated with signs. Stay on the marked trail. Roads for joint use by ATV's and vehicular traffic are marked with caution signs at all road junctions. All municipal and state-owned roadways open to ATV use are designated as such with the following sign:

· ATV operation for people with disabilities

State forests throughout Pennsylvania have designated and maintained the following ATV trails to accommodate trail enthusiasts:

ATV TRAILS OPEN DURING THE SUMMER SEASON

These trails are typically open from the Friday before Memorial Day through the last full weekend in September. Check the forest district web pages for current access advisories.

ATV TRAILS OPEN DURING THE SUMMER SEASON

These trails are typically open from the Friday before Memorial Day through the last full weekend in September. Check the forest district web pages for current access advisories.

*

Martin Hill -- Bedford County -- 18 miles of summer trail. Access to the trail is from the parking area located on Route 326 two miles south of Rainsburg. Trail head GPS location: N 39° 52' 24.69" W 78° 30' 34.80" Contact: <u>Buchanan State Forest</u>, 440 Buchanan Trail, McConnellsburg, PA 17233 Phone: 717-485-3148

ð

Sideling Hill -- Fulton County -- 15 miles of summer trail in the Wells Tannery area. Access is from Ray's Cove Road or Childers Ridge Road. Trail head GPS location: N 40° 5' 0.28 W 78° 10' 12.17" Contact: <u>Buchanan State Forest</u>, 440 Buchanan Trail, McConnellsburg, PA 17233. Phone: 717-485-3148

2

Potter County -- 43 miles of summer trail. A loop trail located south of Denton Hill State Park. Access to the trail is from Lyman Run State Park, on SR 44 north of Cherry Springs, or the intersection of Rock Run Road and the Ridge Trail (ATV trail). Registered Class II ATV's are permitted on this trail that are less than 58" in width and less than 1,200 pounds.

Contact: <u>Susquehannock State Forest</u>, PO Box 673, Coudersport, PA 16915 Phone: 814-274-3600

2

Maple Run Tract, Pike County -- 8 miles of summer trail. Access is from a parking area on Route 402 1-3/4 miles north of the village of Pecks Pond. Registered Class II ATV's less than 58" in width and less than 1,200 pounds .are permitted on this trail.

Contact: Delaware State Forest, 2174A Route 611, Swiftwater, PA 18370-7746

Phone: 570-895-4000

SUMMER AND WINTER TRAILS

These summer season runs from the Friday before Memorial Day through the last full weekend in September.

The winter season runs from the day following the last day of the regular or extended antierless deer season as established by the Game Commission through the following April 1.

There are some trails that remain closed until after the late muzzleloader season. Please check the <u>forest district web pages</u> for current access advisories on when trails open for the winter season.

2

Pike County -- Burnt Mills -- 7 miles of summer and winter trail. Access is from a parking area on Route 402 one mile south of Porters Lake. Registered Class II ATV's are permitted on this trail that are less than 58" in width and less than 1,200 pounds. Contact: Delaware State Forest, 2174A Route 611, Swiftwater, PA 18370-7746 Phone: 570-895-4000

÷

Adams and Cumberland Counties -- 36 miles of summer trail. During the winter season the trail system is expanded to 42 miles by using some dirt roads that are gated during the winter. Part of the trail system is shared with snowmobiles when there is sufficient snowfall. The trail is located between Big Flat and Pine Grove Furnace State Park. Access to these are from parking lots located at Big Flat along Shippensburg Road about 1-1/4 miles north of its intersection with Route 233 and on Piney Mountain along Bendersville Road south of Pine Grove Furnace State Park. Contact: Michaux State Forest, 10099 Lincoln Way East, Fayetteville, PA 17222 Phone: 717-352-2211

*

Snyder and Union Counties -- 15.4 miles of summer trails. Access is at the Jacks Mountain Trailhead located along Route 235 three miles south of Glen Iron. The trail includes the East Kettle Road which has been closed to other types of motor vehicles. Registered Class II ATV's are permitted on this trail that are less than 58" in width and less than 1,200 pounds.

Contact: Bald Eagle State Forest, 18865 Old Turnpike Rd, Millmont, PA 17845

Phone: 570-922-3344

SUMMER AND WINTER TRAILS

*

Clinton County -- The Whiskey Springs ATV Trail (PDF) -- 50 miles of summer and winter trails. The Whiskey Springs ATV Trail is located Southeast of Kettle Creek State Park. Trailhead access is from SR 120 in Westport along Kettle Creek for approximately 1.5 miles then North on Two-Mile Road. Trails are open to registered Class II ATV's less han 58" in width and less than 1,200 pounds. Contact: Sproul State Forest, 15187 Renovo Road, Renovo, PA 17764 Phone: 570-923-6011

ð

Centre and Clinton County -- <u>Bloody Skillet ATV Trail (PDF)</u> -- 38 miles of summer and winter trails. Access from SR 144 approximately 19 miles north of the Snow Shoe Exit of US Route 80. Turn right onto De Haas Road and travel 5.3 miles South, to the Northern Terminus Trailhead. Trails are open to registered Class II ATV's less than 58" in width and less than 1,200 pounds. Contact: <u>Sproul State Forest</u>, 15187 Renovo Road, Renovo, PA 17764 Phone: 570-923-6011

÷

Lycoming County -- 17 miles of summer and winter trail. Trails are located near Haneyville and include the Button Road and a network of wooded trails built by the Civilian Conservation Corps in the 1930's. Access to the trail is from a parking area located at the former parking area located at the CCC Camp along Route 44 one mile south of Haneyville.

Contact: <u>Tiadaghton State Forest</u>, 10 Lower Pine Bottom Rd, Waterville, PA 17776 Phone: 570-753-5409

*

Dixon R. Miller Recreation Area -- (Formerly the Pohopoco Tract), Monroe County -- 13 miles of summer and winter trails. Access is from Route 115 five miles south of I-80. Registered Class II ATV's are permitted on this trail that are less than 58" in width and less than 1,200 pounds.

Contact: Delaware State Forest, 2174A Route 611, Swiftwater, PA 18370-7746

Phone: 570-895-4000

https://www.riderplanet-usa.com/atv/trails/info/pennsylvar D + ŝ. C

File Edit View Favorites Tools Help

Whiskey Springs ATV Riding Area

Wednesday, August 30, 2017

Trail Map Slideshow Street Map Print

Alt Names	Whiskey Springs ATV Trall, Sproul State Forest, Kettle Creek Road, Hurling Branch, Two Mile Run, Boyer Road, Fivemile Hollow, Owl Hollow Trail, Robbins Hollow, Mackintosh Hollow, Pecking Patch Hollow
Last Known Status	Open

Located in the Sproul State Forest, this area offers about 45 miles of gravel and logging roads. Previous mining activity has left several play pit areas. Scenic vista points can be seen throughout the trail system.

This trail system is closed seasonally from the last weekend of September until the end of the flintlock/muzzleloader hunting season (generally around mid-January) and closes from April 1 though the Friday before Memorial Day.

There is no charge for camping but a permit is required and reservations must be made in advance by contacting the Sproul State Forest.

Trail Map... Driving Map... **Best Nearby Trails...**

the Like 3

Whiskey Springs Trail Photo

Photo Submitted 6/24/2012 (ThanksI)

Whiskey Springs Trail Photo

🚱 https://www.riderplanet-usa.com/atv/trails/info/pennsylvar 🔎 👻

File Edit View Favorites Tools Help

Ne

Stri Tra

permit is required and reservations must be made in advance by contacting the Sproul State Forest.

Trail Map... Driving Map... Best Nearby Trails...

👍 Like 3

Whiskey Springs Trail Photo

Whiskey Springs Trail Photo

DRIVING DIRECTIONS

arest City	Renovo, PA
	From: Williamsport, PA
	1) Take US-220 west to Lock Haven Exit
Presspirate -	2) Turn right (north) off exit ramp on SR-120, continue .8 miles
	Turn left (west) on SR-120, continue 34.1 miles
net Hap	Turn right (north) on Kettle Creek Road, continue 1.6 miles
il Map 🦻	Staging area is on the right (east).

TYPE OF AREA

Trail
State Forest

RATINGS

Our Rating Recommended Stay

G+ 1-2 Days

A C

File Edit View Favorites Tools Help

TERRAIN

Miles Of Trail	45					
Climate Type	Forest					
Elevation	1000 to 1500 ft.					
Trail Maintenance	Not Ma Lightly			ot Rated, ned		
Loose Dirt	-			Mostly		
Hard Pack	-			Some		
Sand				None		
Mud	-	-		Some		
Dust	-			Little		
Rocks	-			Some		
Trees	-	_	-	All		
Steep Hills	-			Few		
Water Crossings	-			Few		
Small Jumps				None		
Large Jumps				None		
Berms				None		
Single Track				None		
Intersections	-	-		Some		
Rider Traffic	-	•		Some		
Hazards	-			Few		
Sovice Novice	-	-		Some		
🖉 Amateur	-	-		Mostly		
Expert	-			Little		

(hazards assumed marked but use caution)

REGULATIONS

Permit Required	No	ATVs must be registered and have proof of liability insurance.
Dates Open	Friday before Memorial Day through last full weekend of September; re-opens mid January through April 1	
Spark Arrestor	Yes	A spark arresting silencer or end cap is required for all vehicles.
Noise Limit	Yes (99 dB)	

Photo Submitted 5/8/2012 (Thanks!)

Whiskey Springs Trail Photo

Photo Submitted 5/8/2012 (Thanks!)

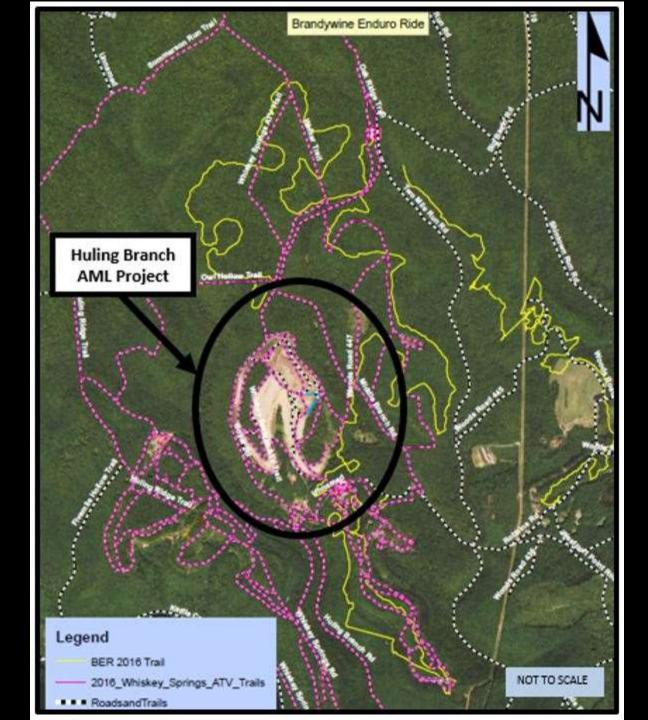
Mttps://www.riderplanet-usa.com/atv/trails/info/pennsylvar D -

📾 🖸 💮 Whiskey Springs ATV Riding... × 😨 ATV Trails in State Forests

File Edit View Favorites Tools Help

REGULATIONS			
Permit Required	No	ATVs must be registered and have proof of liability insurance.	
Dates Open	Friday before Memorial Day through last full weekend of September; re-opens mid January through April 1		Phot
Spark Arrestor	Yes	A spark arresting silencer or end cap is required for all vehicles.	
Noise Limit	Yes (99 dB)		
Whip Flags	Not Required		
Maximum Vehicle Width	Yes (58 inches)	has entrance gate or posts	
Motorcycles	Prohibited		
ATVs	Permitted	(maximum width 58 inches)	
UTVs / SXS	Permitted	(maximum width 58 inches)	
SUVs / Jeeps (registered)	Prohibited		
Dune Buggy/Sand Rail 4x4 (unregistered)	Prohibited		
Two Strokes / 2 Cycle Engines	No Restriction		
Helmets Required	Yes	helmets required by state law	Whi
Bicycles	No Restriction		
Hiking	No Restriction		
Horseback	No Restriction		
🕰 Camping	Some Areas	(camp in developed sites only)	
Campfires Night Riding	Unknown		
Cross Country Emergency / Law Enforcement	Prohibited	stay on trail	
	*Disclaimer: Be Safe! Ri	derPlanet recommends insurance for all riders and visitors to	

o Submitted 5/8/2012 (Thanks!)


iskey Springs Trail Photo

the destinations depicted on this website.

FEES & PASSES

Darking

View Revortes 3	ople : Hel	þ.												
	۵				Enduro ra, Crass Fork PA						uro Ineel	-Ing	v.	 Print results Export CSV Time Format Presentation
	Ove	rall (.Pos G.Pos Gr	oup Number	Name	Class	Brand	Section 1	Section 2	Section 3	Section 4	Section 5	Section 6	Early Tot. Tir
~	1	i i	1	31A	Thad Duvall	Pro	Husqvarna	17m 17s 862 (2)	19m 51s 414 (2)	17m 27s 728 (9)	19m 15s 4cs (4)	15m 51s ses (2)	27m 35s ma (1)	117m 1 677
ly:	2	2	2	42A	Josh Strang	Pro	Husqvalma	17m 16s soı (1)	20m 967 (3)	17m 15s 351 (4)	19m 9s 450 (3)	15m 51s 430 (1)	27m 53s 279 (4)	117m 2 978
t class:	з	i.	3	33A	Josh Toth	Рто	Yamaha	17m 42s eo (8)	19m 39s 7aa (1)	16m 59s 780 (1)	18m 52s 722 (1)	16m 4s ese (5)	28m 23s 177 (8)	117m 4 221
~	4	ŧ.	4	32A	Steward Baylor Jr	Pro	КТМ	17m 28s e90 (5)	20m 24s 3sz (9)	17m 14s zao (3)	19m 18s 477 (5)	15m 58s 111 (3)	27m 38s aas (3)	118m
	5		5	49A	Ben Kelley	Pro	KTM	17m 32s 1ea (6)	20m 18s 7st (7)	17m 7s asa (2)	19m 33s 1es (11)	16m 2s ese (4)	27m 35s ata (2)	118m 849
	6	6	6	37A	Jesse Groemm	Pro	KTM	17m 47s ace (10)	20m 18s szs (6)	17m 27s so4 (8)	18m 55s @ (2)	16m 19s 150 (10)	27m 59s 158 (5)	118m 4 215
	7		7	36A	Cory Buttrick	Pro	KTM	17m 23s 720 (3)	20m 22s 333 (8)	17m 21s 919 (5)	19m 21s sin (7)	16m 16s 978 (9)	28m sos (6)	118m 354
	8	1	8	34A	Grant Baylor	Pro	Husqvarna	17m 25s 20 (4)	20m 25s asa (10)	17m 24s 446 (7)	19m 18s 9m (6)	16m 6s aa (6)	28m 38s 401 (11)	119m 175
	9		9	35A	Russell Bobbitt	Pro	KTM	17m 40s 609 (7)	20m 18s 247 (5)	17m 30s 344 (10)	19m 23s ast (8)	16m 6s 243 (7)	28m 35s as (10)	119m 312
	10	0	10	47A	Ryder Lafferty	Pro	KTM	17m 44s 592 (9)	20m 27s 232 (11)	17m 44s ast (12)	19m 27s sie (10)	16m 7s 300 (8)	28m 20s 231 (7)	119m 731
	1	1	11	38A	Evan Smith	Pro	ктм	17m 52s => (11)	20m 18s 216 (4)	17m 22s ass (6)	19m 25s eez (9)	16m 27s 29 (11)	28m 59s sei (12)	120m
	17	2	12	44A	Nick Fahringer	Pro	Sherco	18m 21s zaz (15)	21m 9s siz (16)	17m 45s 126 (13)	19m 45s s41 (13)	16m 38s ass (13)	28m 23s 227 (9)	122m 493
	13	3	1	21A	Thom Devlin	Expert-AA	Husqvarna	19m 25s 672 (36)	20m 56s sov (13)	17m 40s 111 (11)	19m 50s 559 (14)	16m 33s 464 (12)	30m 5s 730 (16)	124m

About the NEPG

The NEPG was formed by a group of Enduro enthusiasts to assist the AMA in promotion and management of the AMA National Enduro Series. Our objective is to work with the riders, clubs and sponsors to raise the level of participation and awareness to Enduro competition.

About the AMA National Enduro Series

Enduros are the oldest form of off-road motorcycle competition in the USA. Enduros can trace their beginnings back to 1920 and perhaps even earlier and it is still the premier off road motorcycle competition around the world today.

Evolution

The sport has evolved several times over the years and the newest evolution was designed to meet the needs of today's motorcyclists. The NEPG is the promotional partner of the AMA National Enduro Championship Series and will work with clubs to build awareness and increase ridership at Enduro's. Our goal is to make sure that the oldest form of off road competition will remain strong and viable well into the future.

QUALITY SINGLE-TRACK RACING

Live Scoring Views By The Numbers

Results and Registration Page Views 2016 NEPG Series

)	Pagevi	ews	Unique Page Views	Avg Time On Page
Sumter Registration	287		256	0:02:11
Sumter Results	2982		2443	0:03:03
Knuckle Buster Registration	2192		1663	0:03:40
Knuckle Buster Results	14199		9422	0:06:30
Cajun Classic Registration	2600		1948	0:03:43
Cajun Classic Results	9531		6482	0:06:27
Cherokee National Registration	2933		2071	0:03:54
Cherokee National Results	9540		6522	0:05:50
Huntersville Registration	3854		2999	0:04:03
Huntersville Results	7664		5539	0:06:17
Rattlesnake Registration	2894		2310	0:04:00
Rattlesnake Results	9560		6293	0:06:40
Grassman Registration	3160		2512	0:03:49
Grassman Results	8830		5835	0:06:41
Lead Belt Registration	3956		3118	0:04:21
Lead Belt Results	8197		5498	0:06:17
Zink Ranch Registration	2549		2040	0:03:45
Zink Ranch Results	7110		4750	0:06:59
Total Registration	24425	18917		
Total Results	77613	0.21		

LIVE SCORING

Vilcas	Contraction of the	ter Nationa Hitem Norm								End	uro Inceri	ing i	1301
OFL PERCONCTT	Conte	E.P. 6 17-6	the state	States and Personnel States	Circi	Citra I	Section)	Section 7	Section I.	Bertine 8	Sociality B	Section #	Rety Tes. Time
	1	1	StA .	Charter Bayton	Pre-	Intelle	25m 70x im (%)	20m 75 e tos (2)	129414-9610	285 (010)(0)	17m-84a pin (3)	20% mr (2)	138m (n m)
ter Re.	1	1.	324	Round Soldier	Are.	4346	the basic to	the My posts	Ster 251 and 31	2010.0014-002	[1m 21a at (4)	2000-31-10.001	Lilles Done.
			100	horderen.	Pro.	- Belle	They when a to the	The Manual .	27m Marry 20	26a Decis (de	(Dermineth)	She the profession	Litie Street
			104	Descent Depter In-	fre.	10.000	Movies and Chi	See the real	25-23em.(2)	244 abs write	17m3944415	(00m (m, 13)	100m 100 and
Carlle Carlos	× .		344	Andrew Delwig	No.	(Response)	This Shakes Life	Jim (cm.40)	(1) we also use (1)	Die thranth .	(1)=20++15	20x \$1.1x (1)	Like Six or
1		4	-676	Ury fart	Proj.	manual	Thri Sha wi Mi	Dire to mi Mi	27m 89144 (8)	24m Maine 87h	17m 28x (u) 111	20m to suite	100m 974 cm
c	1	T	124	ings bears	100	incere .	In Beach	244(21.0000)	27m #Ta sec ill.	240-63.010	ales be water	20m 12t se (4)	Mint Descri
	×.		-454	Charia Tlaffina	100	1240	25m 10m (cr 12)	phe dia reality	21-21-21-1-1-1	2hr (Dr. or (M	Bear three B	Debisid?	171 m Blanc
	1.81		154	Carehanes		Are.	Jan Halan DR	pharate and the	20min retter	240.04123.00	The Big art 20.	the burnth	143 m 225 m 4
0	20.	118	404	Devidente-	Pre-	1010	Ibsi Dia iro (5)	2mil. da aci 275	abortate see (1)	No les dilla	10rt 7em (CI)	20rs bis tor 22.00	142m Main
• • • •	32	- 15	115	hilama 2	Par -	Sugar.	distantia di la	244 23 10 11 22	2010 226 10 1281	Jie the nil	284 Teau (122)	204 334 01 128	1864 Zie im
	12	11	154	ingh Tart	-	404	264-39 or fill	The distantial	(the Alternation	25410341120	18m21 mildl	21.00 Million (0.00	Libber, Micro-
	10	100	458.	Avail 5-yet	Pie	101	The Acres (15)	Dires After tai (D)	30 m 23 s an (17)	25A (11: ++ 3) (0	The Strain (M	- Mine of Low (1)	Links North
5 I	24	18	100	(Scoir Lifterly	. the	namena	2744-44 20 (20)	29m His on 222	20+14101221	25A28cm028	invation (17)	Debrarde	284×53+m
	28		MA.	New York	1.84	Beta	the New Dir.	No 25 ALES	20-1-w122	dishwill.	38+49-1412	Determine the	Addres \$74 million
	26	18.	1968	Barbalan	Pa	Terata .	The offering 170	$25 m D \to 0.71$	10-17-14 AR	No.46.4936	18+15 w-08	221-1 101-1-1 1222	340m Beine
	- 20	14	-29A	Zach Vispec	Extended .	4756	and the second	Then the and (127)	ille ifos all	25+33+9103	281 - 184 (a 121)	In the other	Jobe ets co
	18.			San from		limite	27m (16 mt 1210	(ten (by sel (t))	it with a with the	10m (n.m. 1212	104, 24, 4, 101	The State of Lot	1000-000-0-
	1.10	18	254	Comp Delotes		Annana	and the salare	2014 201 No. 41	29+34 w 201	No will DR	the Male 1977	dishments)	Lation Life inc
		10	144	San Judey	Pre-	174	(The line of the	its to reach	Bester, GR	She make up	desire in etabl	Tim Th or 22	147m 201 m

Event Demographics & Stats

- 9-10 Event series located across the country from the Atlantic to the Rockies
- Average rider entries (569)
- Average rider age (32) ranging from 16 to 75
- Average motorcycle brands entered per event (10)
- Average states represented at each event (26) ranging from 18 to 37
- Average spectators per event (1800)
- · Events feature quality single track motorcycle competition

Web Site and Social Media Stats

www.nationalenduro.com @NEPGENDURO

Visits168,836Visits / Month (Avg)13,569Page Views438,477Page Views / Month (Avg) 36,539Audience SizeAudience Size68,914Audience Size / Month (Avg) 5,742Instagram followersInstagram followers14kUp over 375% over 1-year agoVideo Videws 71,757

Top Rider Participation

ROCKSTAR ENERGY HUSQVARNA

GRANT MPRO

PRESENTATION

FACTORY PARTICIPATION

PARTNER PROMOTIONS

0

KEY TIME THE MANY FACES OF ENDURO RACING

Most of us have helped out at a local metorcycle race by flagging or scoring an event and have learned that there's a lot involved with working an event, not to merition putting one on, imagine what it takes to run an entire national safes, especially one as big and prastigious as the famel AMA Hallonal Enduro Seriel's There's plontly more going on behind the scores then you might their at a national endure, and Bur Aldonal Enduro Tenta with Alan Randt, head of the Kational Enduro Promotions Group, to find out just what happens before and after key time.

IN THE BEGINNING The main objective of the National

Enduro Promosions Group (NEPG) is to guarantee consistency from event to event. Since the races are hosted by a different local club at each different location on the schedule, there needs to be some continuity between events so the riders know that every race on the calendar is going to be a quality event. So before any work on the course is started, the NEPG

has the course fully arrowed and the milease markers are up. That's when the NEPC goes to work, riding the course to see that time theck locations. are marked so they can guarantee that the course is easily accessible not only for the track crews but for the NEPG staff as well. A spot for the actual scoring equipment is then marked out at the start and end of each test. When running the course for the first time, the NEPG crewitides it with an

Recleter Energy Huseverna Rectary Rector(s lesh Stong came in shing at the end of the season, narrowly missing his first national endurowin one second behind Baylor.

ing down from them so if someone would happen to blow a turn, they go underrigath and don't break down the ribbon for the next guy, so that course marking would stay linead from the first quy to she last quy."

TAKING CARE OF BUSINESS

Melissa Randt is Alan's wile and right-hand man... er, woman. Meitsa is in charge of taking care of the

left) and Alan Randl check out markers as the ne-risk the course it is styles' silly entiry round. Dollary and informs him about where his team will have access.

ove specard the average rider while also taking into consideration the proriders. The objective is to make it fun for everyone.

"You have to keep all of those things in mind," Randt says, "particularly when it comes to course markings. or than what a lot of the dub riders not necessarily just arrows right at the turn. We also like having our ribbons up high with some streamers hang-

teams and riders. She puts together a map for the teams and the video and photography personnel so that they know where they need to be and what time they need to be there during the race. Then on Saturday she'll take the pro teams around and physically show them where their riders will be at canain times and what access they have to the course. The NEPG tries to have access after every test somewhere between the and and the beginning of the next. test for those teams to refuel and do maintenante

Eight-Stime reational endant dramp Wike Latterly

sends each dub an information packet giving them guidelines such as the recommended length of the tests and the recommanded total mileage. According to Rands, the recommended length of a test ranges from 6 to 12 miles, and events usually consist of six tests with the C riders usually riding only four of those and the B riders dropping out after five.

CHECKING THE COURS

When Randt and his crew show up at the venue - usually on Wednesday or Thursday-the hosting dub already

The pro-riders are going so much fastare familiar with, so you need to have turn arrows far enough ahead so warn them there's a corner coming up, and

ors, Ressal Boldhitt Bolth and A norm Delong, joke groundwhile setting theirs aches to key time.

No bener salarai entre charei-

- 3 Primary Project Concerns/Objectives:
 - 1st Eliminate P2 DH Conditions of over 6,000 L.F.
 - Intense site visitation due to the unauthorized use of the AML site by ATV riders to areas off of PA DCNR's designated Whiskey Springs ATV trail within the Sproul State Forest
 - Whiskey Springs ATV trail is 50 miles long, 3.6 miles within project area
 - 40 acre ATV play area
 - Numerous accidents, several of which required life flight helicopter
 - Reforestation Initiative of Sproul State Forest
 - 2nd Maintain & Establish 3.6 miles of ATV trail
 - ◆ ATV trail supported recreational use by visitors of Sproul State Forest
 - Portions of the ATV trail used for the annual Rattlesnake National Enduro
 - 3rd Reduce site AMD impacts on both surface and groundwater
 - AMD Source Remediation through Alkaline Addition placement
 - Removal and or special handling of acid forming materials
 - Hydrologic controls and identification

ACID MINE DRAINAGE IN THE KETTLE CREEK WATERSHED

Katela Colda

Station Coase

Shaan Sugar

techsi dan

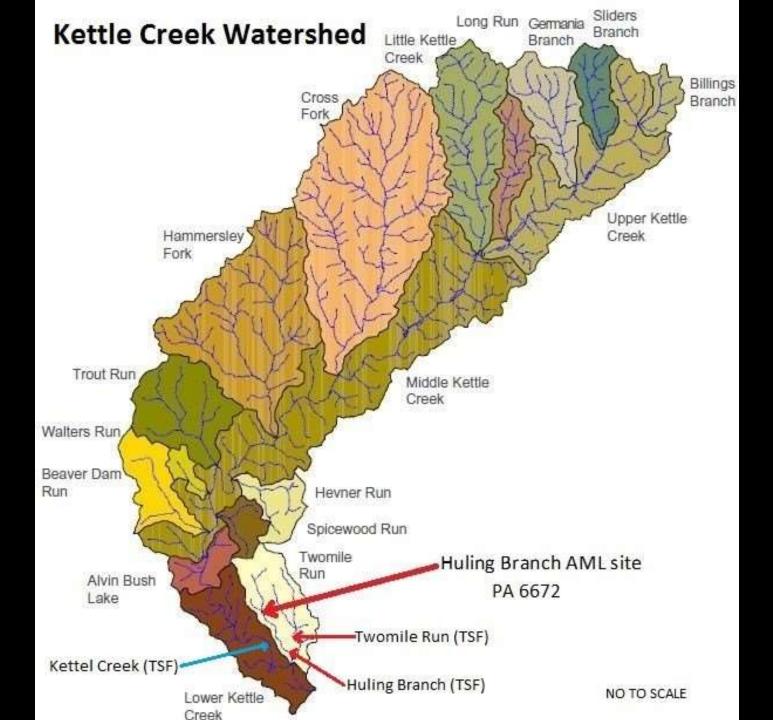
THE KETTLE CREEK WATERSHED encompasses approximately 244 sq. miles, ranging from its headwaters in southwestern Tioga County, through Potter County to its confluence with the West Branch of the Susquehanna River in northwestern Clinton County, Although the majority of the watershed is classified as having exceptional water quality, the lower basin of Kettle Creek is polluted with acid mine drainage (AMD), #D is a result of historic coal mining practices that began over 100 years ago.

AMD is caused by the flow of water, through abandoned and poorly reclaimed coal mine environments. AMD directly impacts many of the streams in the lower Kettle Creek watershed, rendering them essentially lifeless. The last 6 miles of Kettle Creek and many miles of tributaries are impacted by AMD, and this polluted water flows into the West Branch of the Susquehanna. Fiver, polluting it as well.

WHAT ARE THE EFFECTS OF ACID MINE DRAINAGE ?

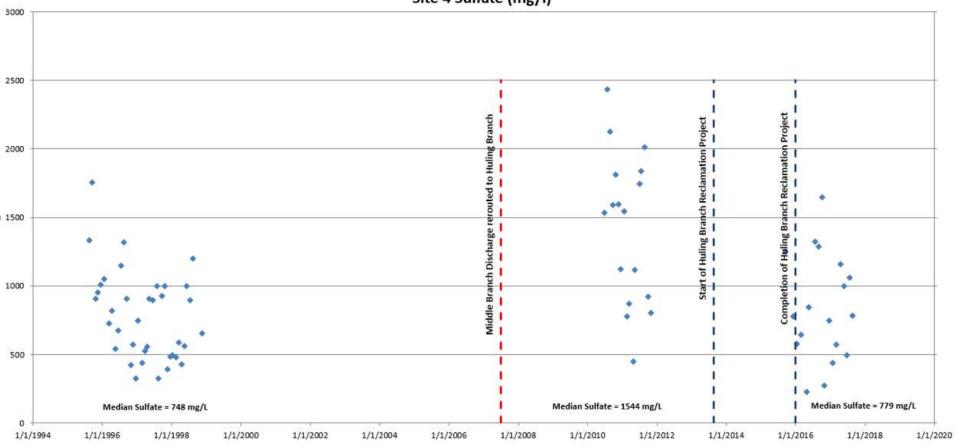
High acidity [low pH] High metal concentrations [aluminum, iron, and manganese] High sulfate levels Excess sediment All the above create conditions in which fish and other aquatic organisms cannot survive.

VISUAL EFFECTS OF ACID MINE DRAINAGE

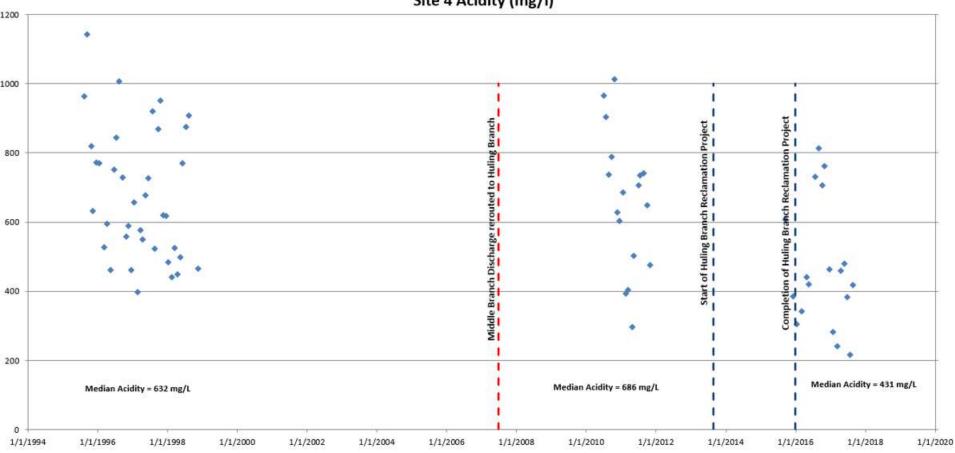

fron causes yellow - orange to rust colored staining that is apparent on the rocks Aluminum is responsible for the white color often seen on exposed rocks Manganese will stain rocks black

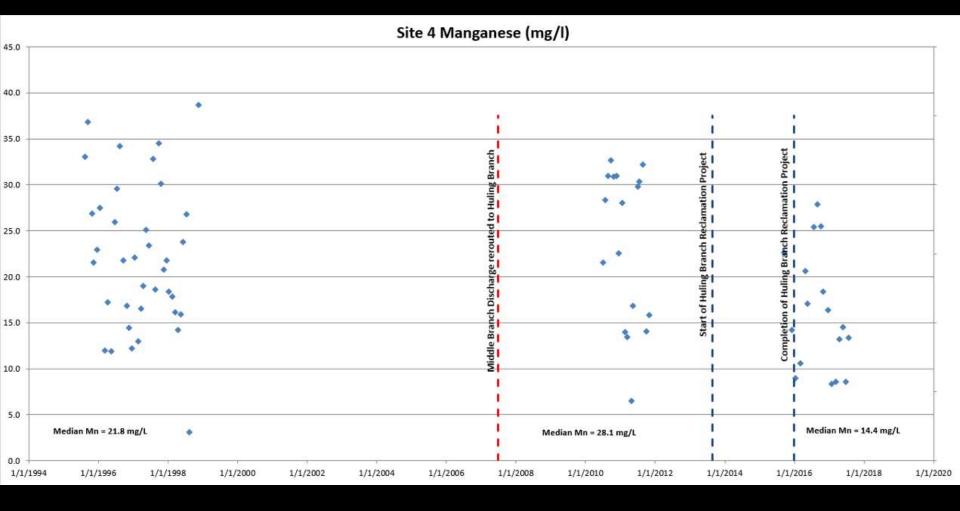
WHAT IS BEING DONE TO TREAT THE KETTLE CREEK AMD ? Kettle Creek Watershed Association, a local non-profit organization, is working to restore the lower KettleCreek watershed through treatment of AMD. The KCWA works closely with Trout Unlimited and many other partners to develop and implement treatment strategies using the best technical solutions. See the opposite side on this sign for more information on the Middle Branch passive treatment system.

For up-to-date information, please write to: KCWA, P. O. Box 317, Cross Fork, PA 17729 or check the website at WWW.kettlecreek.org


- Innovative Use of Current Technology:
 - Forestry Reclamation Approach (FRA) Grading
 - Reduce site AMD impacts on both surface and groundwater
 - AMD Source Remediation through Alkaline Addition placement
 - Removal and or special handling of acid forming materials
 - Hydrologic controls and identification

Site 4 Discharge Pre-Condition vs. Post-Condition:


- Median Values of Sulfate Concentration decreased by 50%
- Median Values of Acidity Concentration decreased by 37%
- Median Values of Manganese Concentration decreased by 49%



Site 4 Sulfate (mg/l)

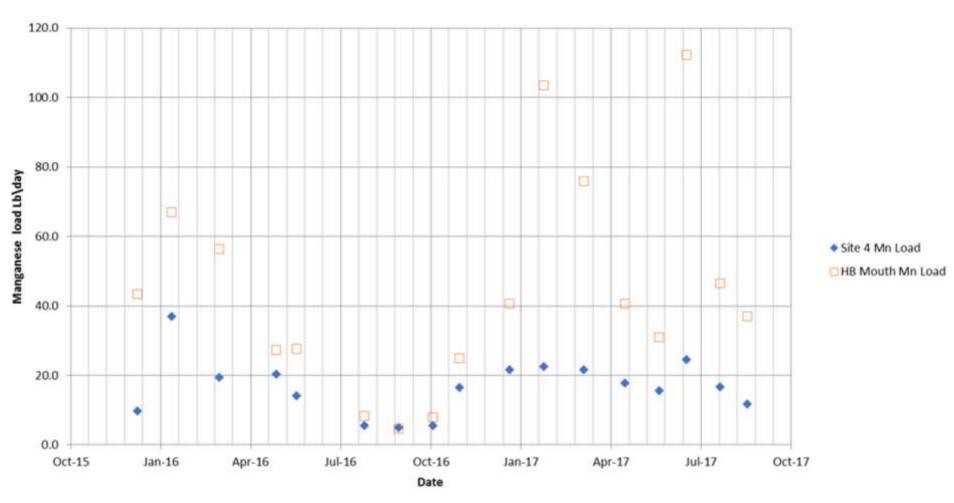
Site 4 Acidity (mg/l)

Area 7 Central Tr	ibutary									
Date	Sample Number	Flow (gpm)	pH	Alkalinity mg/l	Hot Acidity mg/l	Iron (D) mg/l	Manganese (D) mg/l	Aluminum (D) mg/l	Sulfate (D) mg/l	
1/26/2017	7485404	30	5.8	11.0	-4.4	0.02	0.470	0.408	155.4	
3/8/2017	7485503	40	5.8	13.0	0.8	0.042	0.348	0.323	134.8	
4/19/2017	7485521	5	6.0	12.8	-0.4	0.056	0.698	0.2	124	
6/21/2017	7485404	15	6.2	22.0	-9.2	0.102	0.578	0.2	70	

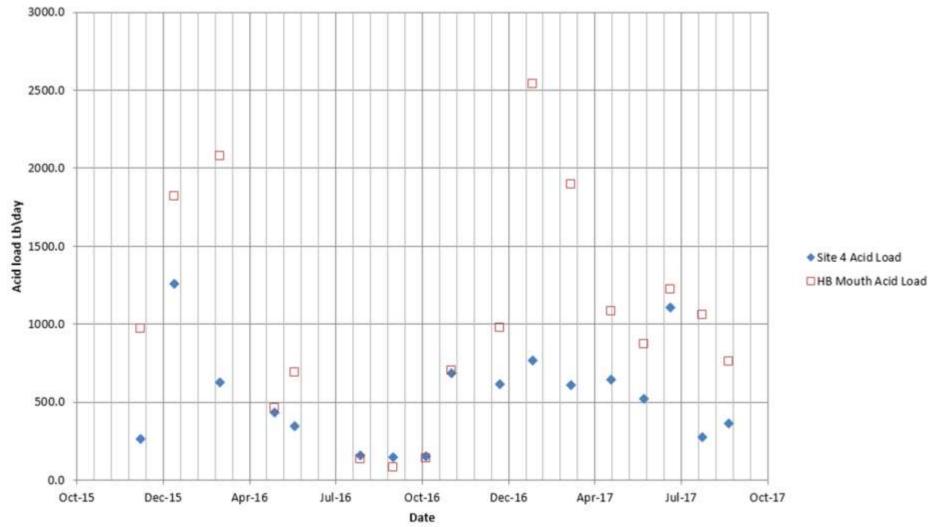
Drain									
Sample Number	Flow (gpm)	pH	Alkalinity mg/l	Hot Acidity mg/l	Iron (D) mg/l	Manganese (D) mg/l	Aluminum (D) mg/l	Sulfate (D) mg/l	Acid Load Ibs/day
7485202	2.5	2.7	0	701.40	36.90	18.60	80.70	761.0	21.1
7485403	33	2.9	0	503.60	30.70	13.70	61.70	884.1	199.8
7485502	6.5	2.8	0	555.4	24.92	17.91	80.61	1216	43.4
7485518	3.5	2.8	0	625.6	33.48	14.2	65.12	1213	26.3
7485702	1.0	2.8	0	722.6	21.87	21.9	88.9	1289	8.7
7485403	40	2.8	0	482.4	34.5	9.46	42.4	645.2	231.9
Median			-	590.50	32.09	16.06	72.87	1048.55	34.86
	Sample Number 7485202 7485403 7485502 7485518 7485702 7485403	Sample Flow (gpm) 7485202 2.5 7485403 33 7485502 6.5 7485518 3.5 7485702 1.0	Sample Number Flow (gpm) pH 7485202 2.5 2.7 7485403 33 2.9 7485502 6.5 2.8 7485518 3.5 2.8 7485702 1.0 2.8 7485403 40 2.8	Sample Number Flow (gpm) pH Alkalinity mg/l 7485202 2.5 2.7 0 7485403 33 2.9 0 7485502 6.5 2.8 0 7485518 3.5 2.8 0 7485702 1.0 2.8 0 7485403 40 2.8 0	Sample Number Flow (gpm) pH Alkalinity mg/l Hot Acidity mg/l 7485202 2.5 2.7 0 701.40 7485403 33 2.9 0 503.60 7485502 6.5 2.8 0 555.4 7485518 3.5 2.8 0 625.6 7485702 1.0 2.8 0 722.6 7485403 40 2.8 0 482.4	Sample Number Flow (gpm) pH Alkalinity mg/l Hot Acidity mg/l Iron (D) mg/l 7485202 2.5 2.7 0 701.40 36.90 7485403 33 2.9 0 503.60 30.70 7485502 6.5 2.8 0 555.4 24.92 7485518 3.5 2.8 0 625.6 33.48 7485702 1.0 2.8 0 722.6 21.87 7485403 40 2.8 0 482.4 34.5	Sample Number Flow (gpm) pH Alkalinity mg/l Hot Acidity mg/l Iron (D) mg/l Manganese (D) mg/l 7485202 2.5 2.7 0 701.40 36.90 18.60 7485403 33 2.9 0 503.60 30.70 13.70 7485502 6.5 2.8 0 555.4 24.92 17.91 7485518 3.5 2.8 0 625.6 33.48 14.2 7485702 1.0 2.8 0 722.6 21.87 21.9 7485403 40 2.8 0 482.4 34.5 9.46	Sample Number Flow (gpm) pH Alkalinity mg/l Hot Acidity mg/l Iron (D) mg/l Manganese (D) mg/l Aluminum (D) mg/l 7485202 2.5 2.7 0 701.40 36.90 18.60 80.70 7485403 33 2.9 0 503.60 30.70 13.70 61.70 7485502 6.5 2.8 0 555.4 24.92 17.91 80.61 7485518 3.5 2.8 0 625.6 33.48 14.2 65.12 7485702 1.0 2.8 0 722.6 21.87 21.9 88.9 7485403 40 2.8 0 482.4 34.5 9.46 42.4	Sample Number Flow (gpm) PH Alkalinity mg/l Hot Acidity mg/l Iron (D) mg/l Manganese (D) mg/l Aluminum (D) mg/l Sulfate (D) mg/l 7485202 2.5 2.7 0 701.40 36.90 18.60 80.70 761.0 7485403 33 2.9 0 503.60 30.70 13.70 61.70 884.1 7485502 6.5 2.8 0 555.4 24.92 17.91 80.61 1216 7485518 3.5 2.8 0 625.6 33.48 14.2 65.12 1213 7485702 1.0 2.8 0 722.6 21.87 21.9 88.9 1289 7485403 40 2.8 0 482.4 34.5 9.46 42.4 645.2

Area 7 East Side [Drain									
Date	Sample Number	Flow (gpm)	pH	Alkalinity mg/l	Hot Acidity mg/l	Iron (D) mg/l	Manganese (D) mg/l	Aluminum (D) mg/l	Sulfate (D) mg/l	Acid Load Ibs/day
1/26/2017	7485405	15	3.10	0	197.60	24.60	1.92	17.0	393.00	35.6
3/8/2017	7485504	5	2.8	0	372.6	49.21	3.54	31.43	718.9	22.4
4/19/2017	7485519	5	2.8	0	349.6	38.1	3.219	24.34	650.1	21.0
5/24/2017	7485503	3	2.8	0	415.6	46.3	3.72	31.11	744.4	15.0
6/21/2017	7485405	15	3.0	0	179.8	19.0	1.59	12.6	274.1	32.4
	Median	4			349.60	38.10	3.22	24.34	650.10	22.39

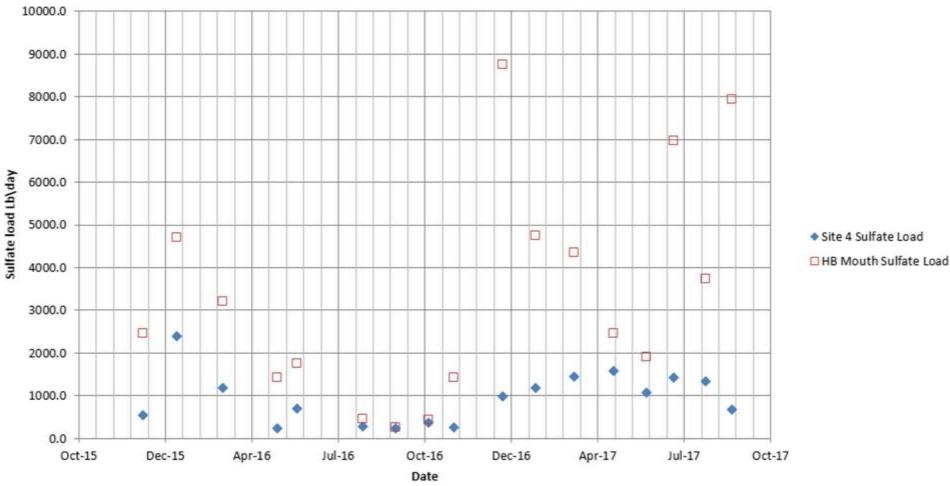
Area 7 Far East Si	de Drain									
Date	Sample Number	Flow (gpm)	pH	Alkalinity mg/l	Hot Acidity mg/l	Iron (D) mg/l	Manganese (D) mg/l	Aluminum (D) mg/l	Sulfate (D) mg/l	Acid Load Ibs/day
1/26/2017	7485406	72	2.6	0	748.4	64.2	11.3	79.7	1415.00	647.7
3/8/2017	7485505	18	2.7	0	668.2	50.44	11.6	82.1	1185	144.6
4/19/2017	7485520	18	2.6	0	1007.8	57.86	15.62	108.5	1585	218.0
5/24/2017	7485704	14	2.7	0	845.2	55.65	15.45	100.6	1235	142.2
6/21/2017	7485406	100	2.6	0	711.2	60.1	10.49	75.8	815.6	854.9
	Median				748.40	57.86	11.60	82.10	1235.00	218.05


Area 7 West Side	Drain									
1111.00.01	Sample			Alkalinity	Hot Acidity	Iron (D)	Manganese (D)	Aluminum (D)	Sulfate (D)	Acid Load
Date	Number	Flow (gpm)	pH	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	lbs/day
12/22/2016	7485202	2.5	2.7	0	701.40	36.90	18.60	80.70	761.0	21.1
1/26/2017	7485403	33	2.9	0	503.60	30.70	13.70	61.70	884.1	199.8
3/8/2017	7485502	6.5	2.8	0	555.4	24.92	17.91	80.61	1216	43.4
4/19/2017	7485518	3.5	2.8	0	625.6	33.48	14.2	65.12	1213	26.3
5/24/2017	7485702	1.0	2.8	0	722.6	21.87	21.9	88.9	1289	8.7
6/21/2017	7485403	40	2.8	0	482.4	34.5	9.46	42.4	645.2	231.9
	Mediar	1			590.50	32.09	16.06	72.87	1048.55	34.86
Area 7 East Side I	Drain									
Date	Sample Number	Flow (gpm)	pH	Alkalinity mg/l	Hot Acidity mg/l	Iron (D) mg/l	Manganese (D) mg/l	Aluminum (D) mg/l	Sulfate (D) mg/l	Acid Load Ibs/day
1/26/2017	7485405	15	3.10	0	197.60	24.60	1.92	17.0	393.00	35.6
3/8/2017	7485504	5	2.8	0	372.6	49.21	3.54	31.43	718.9	22.4
4/19/2017	7485519	5	2.8	0	349.6	38.1	3.219	24.34	650.1	21.0
5/24/2017	7485503	3	2.8	0	415.6	46.3	3.72	31.11	744.4	15.0
6/21/2017	7485405	15	3.0	0	179.8	19.0	1.59	12.6	274.1	32.4
	Median	1			349.60	38.10	3.22	24.34	650.10	22.39
Area 7 Far East Si	de Drain	-						-		
Date	Sample Number	Flow (gpm)	pH	Alkalinity mg/l	Hot Acidity mg/l	Iron (D) mg/l	Manganese (D) mg/l	Aluminum (D) mg/l	Sulfate (D) mg/l	Acid Load
1/26/2017	7485406	72	2.6	0	748.4	64.2	11.3	79.7	1415.00	647.7
3/8/2017	7485505	18	2.7	0	668.2	50.44	11.6	82.1	1185	144.6
4/19/2017	7485520	18	2.6	0	1007.8	57.86	15.62	108.5	1585	218.0
5/24/2017	7485704	14	2.7	0	845.2	55.65	15.45	100.6	1235	142.2
6/21/2017	7485406	100	2.6	0	711.2	60.1	10.49	75.8	815.6	854.9
-11	Median		(11.771	748.40	57.86	11.60	82.10	1235.00	218.05

	Site 4	Discharge Ar	ea7	Huli	ing Branch Mouth		
	Mn load	Mn load Acid Id. SO4 load		Mn load	Acid Id.	SO4 load	
	#/day	#/day	#/day	#/day	#/day	#/day	
12/8/2015	9.8	265.5	536.8	43.3	972.7	2451.6	
1/12/2016	37.0	1260.6	2382.1	67.0	1818.6	4702.1	
3/1/2016	19.5	627.2	1181.4	56.4	2078.7	3211.2	
4/28/2016	20.3	434.8	226.0	27.3	460.1	1430.1	
5/19/2016	14.1	347.5	698.4	27.7	692.2	1746.2	
7/27/2016	5.5	157.9	286.5	8.3	137.3	464.9	
8/31/2016	5.0	146.6	232.4	4.7	84.5	251.6	
10/5/2016	5.5	152.9	356.8	8.0	139.9	423.1	
11/1/2016	16.6	687	247	24.9	702.5	1430.8	
12/22/2016	21.7	613	986.5	40.7	980.3	8748	
1/26/2017	22.5	765.1	1177.3	103.5	2539.3	4747	
3/8/2017	21.6	607.6	1440.6	75.9	1894.3	4346	
4/19/2017	17.8	642.2	1567.3	40.6	1082.2	2457	
5/24/2017	15.7	519.5	1078.7	30.9	870.1	1908	
6/21/2017	24.6	1105	1422.5	112.3	1221.0	6973	
7/25/2017	16.8	272.8	1335.3	46.5	1060.6	3726	
8/22/2017	11.7	361.3	675.5	37.02	764.0	7945	



Manganese Loading – Site 4 vs. Huling Branch Mouth



Acid Loading – Site 4 vs. Huling Branch Mouth

Sulfate Loading – Site 4 vs. Huling Branch Mouth

und Mine D	ischarge to l	Huling B	ranch					
Sample Number	Flow (gpm)	pH	Alkalinity mg/l	Hot Acidity mg/l	Iron (D) mg/l	Manganese (D) mg/l	Aluminum (D) mg/l	Sulfate (D) mg/l
7485603	5	3.8	0	78.2	0.06	2.466	9.04	124.5
7485204	50	3.8	0	61.4	0.06	2.132	7.84	118.6
dwater Mo	nitor Wells							
7485050		3.7	0.00	115.4	0.2	2.67	17.4	165.2
7485010		5.1	9.60	20	3.74	7.08	0.2	155
7485020		4.1	3.20	139.6	42.6	5.05	8.53	272.5
	Sample Number 7485603 7485204 Adwater Mo 7485050 7485050 7485010	Sample Flow (gpm) 7485603 5 7485204 50 7485204 50 adwater Monitor Wells 7485050 7485010 7485010	Sample Flow (gpm) pH 7485603 5 3.8 7485204 50 3.8 dwater Monitor Wells 7485050 3.7 7485010 5.1 5.1	Number Flow (gpm) pH mg/l 7485603 5 3.8 0 7485204 50 3.8 0 7485204 50 3.8 0 Mwater Monitor Wells 7485050 3.7 0.00 7485010 5.1 9.60 3.7	Sample Number Flow (gpm) pH Alkalinity mg/l Hot Acidity mg/l 7485603 5 3.8 0 78.2 7485204 50 3.8 0 61.4 Tuber - - - - Mwater Monitor Wells 3.7 0.00 115.4 7485010 5.1 9.60 20	Sample Number Flow (gpm) pH Alkalinity mg/l Hot Acidity mg/l Iron (D) mg/l 7485603 5 3.8 0 78.2 0.06 7485204 50 3.8 0 61.4 0.06 dwater Monitor Wells 7485050 3.7 0.00 115.4 0.2 7485010 5.1 9.60 20 3.74	Sample Number Flow (gpm) pH Alkalinity mg/l Hot Acidity mg/l Iron (D) mg/l Manganese (D) mg/l 7485603 5 3.8 0 78.2 0.06 2.466 7485204 50 3.8 0 61.4 0.06 2.132 Marker Monitor Wells 7485050 3.7 0.00 115.4 0.2 2.67 7485010 5.1 9.60 20 3.74 7.08	Sample Number Flow (gpm) pH Alkalinity mg/l Hot Acidity mg/l Iron (D) mg/l Manganese (D) mg/l Aluminum (D) mg/l 7485603 5 3.8 0 78.2 0.06 2.466 9.04 7485204 50 3.8 0 61.4 0.06 2.132 7.84 Matter Monitor Wells 7485050 3.7 0.00 115.4 0.2 2.67 17.4 7485010 5.1 9.60 20 3.74 7.08 0.2

	Rate)	st 2016 Water G of The Dents Ru sus The Huling I	n Al	ML/AMD E	cosyste	m Res	storati		2 M 4
Point Description	# of samples (N)	Pre / Post	рH	Hot Acidity (mg/l)	Total Fe (mg/l)	Mn (mg/l)	Al (mg/l)	Sulfate (mg/l)	
Point 8 Left	15	Pre 2010 Median	3.5	0	66	3.9	7.8	1.7	271
fork of 1st	4	Post 2010 Median	3.5	0	38.3	1.7	4.5	1.1	195
upstream trib		% Change	-		-42%	-56%	-42%	-35%	-28%
Point 9 Right	15	Pre 2010 Median	3.5	0	122.1	3.3	13.0	11.9	543.2
fork of 1st	4	Post 2010 Median	3.7	0	85.5	1.8	7.9	8.1	450.5
upstream trib	1	% Change			-30%	-45%	-39%	-32%	-17%
Point 11 Trib mouth north	14	Pre 2010 Median	3.7	0	132	7.5	45.3	2.6	2042.15
	5	Post 2010 Median	4	1	68	0.28	20.0	2.4	1109
PA 3897		% Change			-48%	-96%	-56%	-8%	-46%
Point 13	12	Pre 2010 Median	3.7	0	210.4	2.0	18.6	27.5	731.65
Pond	4	Post 2010 Median	4.3	7.9	87.7	0.53	8.5	11.5	487
discharge PA 3898		% Change			-58%	-74%	-54%	-58%	-33%
Point 14 Pit	10	Pre 2010 Median	2.8	0	615	29.2	23.3	62.2	1083.65
Discharge	3	Post 2010 Median	4	0	112	0.34	5.8	7.8	1142
PA 3898		% Change			-82%	-99%	-75%	-87%	5%
Point 15 Trib	12	Pre 2010 Median	3.4	0	228	4.2	29.2	25.7	1300
Mouth PA	4	Post 2010 Median	4.1	2.9	78	0.66	19.4	8.7	1076
3898		% Change			-66%	-84%	-34%	-66%	-17%
Dalast 47	43	Pre 2010 Median	2.8	0	1433.2	300	24.3	102.7	2950.3
Point 17 Discharge	11	Post 2010 Median	2.8	0	1599	300	26.2	114.5	2887
PA 1934		% Change			12%	0%	8%	11%	-2%
Point 19	15	Pre 2010 Median	3.1	0	369	15000	45.4	33.2	1564.4
Discharge	4	Post 2010 Median	3.4	0	145	7828	25.7	13.4	1235
PA 1934		% Change			-61%	-48%	-43%	-60%	-21%
Point 20	14	Pre 2010 Median	5.8	31	287	18.5	33.3	0.61	2025.9
Artesian	4	Post 2010 Median	6.0	66.5	280	16.8	31.8	0.51	2189
Discharge PA 3897		% Change			-2%	-9%	-5%	-16%	8%
and the second se	17	Pre 2010 Median	2.6	0	686	58.3	28.1	52	1545
Huling Branch Site	13	Post 2010 Median	2.7	0	441	53	17.1	23.6	741
Branch Site 4 Discharge		% Change			-36%	-9%	-39%	-55%	-52%
Mater This av	hast of a						1000010-000100		100 million 100 million

Note: This subset of sample points represent only reclamation areas where source abatement and alkaline material addition techniques were deployed. No passive or active treatment is occurring in connection with these locations. The 320 acre Dents Run AML/AMD Ecosystem Restoration Project started in October 2002 and was completed in March 2012.

- Transferability to Other AML Projects:
 - Same Alkaline Addition method to abate AMD of the Huling Branch AML Reclamation Project will be applied to the FY2016 AML Pilot Project of "Fran Contracting Camp Run No. 2"
 - Fran Contracting Camp Run No. 2
 - ◆ 50 acres site of highly acidic mine SA
 - Located in nearby East Keating Township, Clinton County
 - Construction scheduled to begin in the fall of 2017

Post-Construction Conditions:

Nomination and media (pictures and video) are available at:

http://www.dep.pa.gov/Business/Land/Mining/Abandoned MineReclamation/ProgramAccomplishments/Pages/PA'sAw ardWinningReclamationProjects.aspx

THANK YOU

Patrick M. Webb, P.E. | Mining Engineer Manager Department of Environmental Protection Cambria District Office 286 Industrial Park Road | Ebensburg, PA 15931 Phone: 814.472.1830 pawebb@pa.gov

