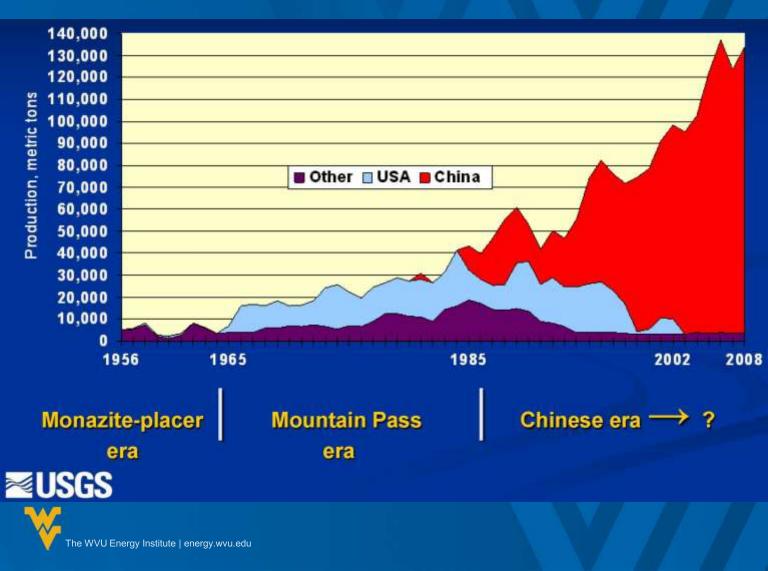


Recovery of Rare Earth Elements (REEs) from Coal Mine Drainage

Paul Ziemkiewicz, Water Research Inst.
Xingbo Liu, Mechanical Engineering Dept.
West Virginia University
Aaron Noble, Mining Engineering Dept.
Virginia Tech

West Virginia Coal Association Income Opportunities from Reclaimed Mine Land 29 Jan 2018 Charleston WV



REE: RESOURCE CHARACTERIZATION

- Demand
- Project Strategy
- Feedstock
 - Acid mine drainage
 - Treatment
 - AMD precipitates
 - Quality
 - Quantity

Our strategic disadvantage: China controls exports ~ 35kt/yr

Projected TREE demand through 2025 (tons/year)

	Global demand	_	USA de	emand		
	@ 7% ann. Growth		total*	defense**		
2017	158,403		15,840	792		
2018	169,845		16,984	849		
2019	182,176		18,218	911		
2020	195,469	<mark>?</mark> \	19,547	977		
2021	209.804		20,980	1,049		
2022	225,265	?	22,527	1,126		
2023	241,947	٦/	24,195	1,210		
2024	259,951		25,995	1,300		
2025	279,387	/	27,939	1,397		
			* 10% global			
			** 5% USA demand			

This assumes that USA manufacturing demand does not increase beyond current rates

USDOE Funded REE research at WVU

Phase 1.

- 1. Development of a cost-effective & environmentally benign process to treat and recover REEs from AMD
- 2. Preliminary process system design and technoeconomic analysis in preparation for pilot-scale testing
- 3. Down select by USDOE/NETL

Phase 2.

- 1. Build and operate a pilot plant
- 2. Report cost/performance

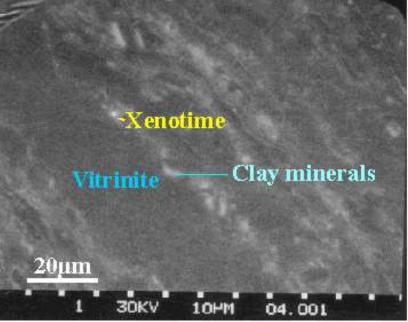
Participants

WVU

- Paul Ziemkiewicz, PhD
 - Director, WVU Water
 Research Institute
- Xingbo Liu, PhD
 - Professor, Mechanical and Aerospace Engineering
- Aaron Noble, PhD
 - Assistant Professor, Mining Engineering

External

- Mepco Inc.
- Rosebud Mining Co.
- West Virginia Dept. of Environmental Protection
- Alliance Coal Corp.
- Consol Energy, Inc.
- Rockwell Automation

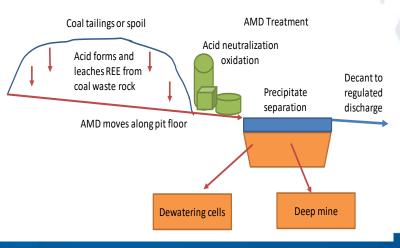

Objective: Develop new, sustainable market-driven opportunities around domestic REE sources Important criteria for attracting investment

- Size of the resource
- Market valuation
- Development costs
 - Preliminaries: exploration, planning, site development..
 - capX
 - opX
- Technology readiness (TRL)
- Environmental footprint
 - permitting
 - liabilities

Mineral associations in WV coals from WVGES

- Monazite (less commonly xenotime): REE (PO₄ SiO₄) weathered from granite as micron-sized particles
- Does not dissolve in weak acid, requires concentrated acid to liberate REEs
- When burned in a PC boiler all of the inert minerals fuse into alumino-silicate glass
- Which is even more Resistant to acid attack

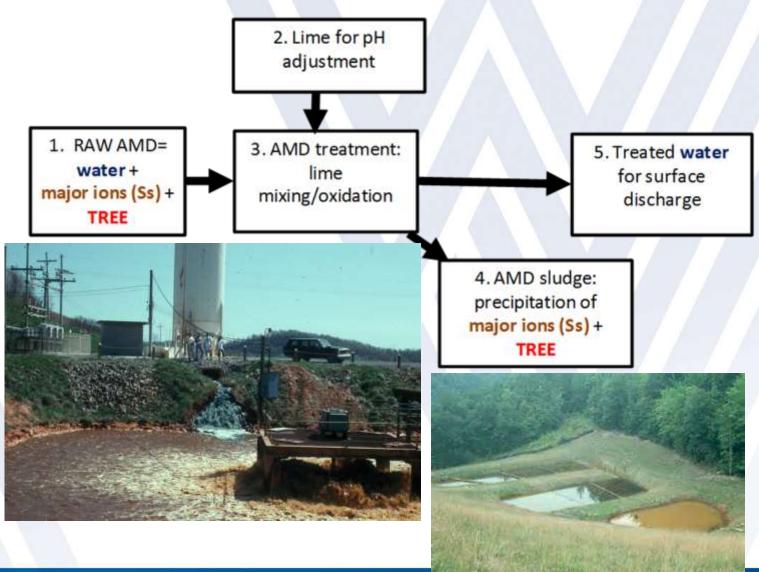
Acid Mine Drainage: AMD 1. H_2SO_4 leaches REEs from shale 2. REE's precipitate with Fe(OH)₃


Pyrite + O_2 + H_2O = Fe^{2+} + H_2SO_4 $Fe^{2+} + O_2 + OH^{-}$ $= Fe(OH)_3$

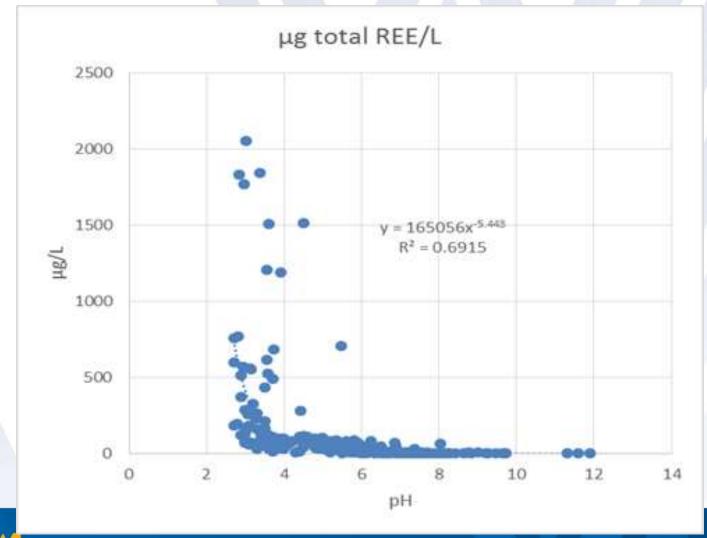
AMD sludge, Why We Care

- Inherent value: \$225/kg of mixed Rare Earth oxide
- In-situ Rare Earth value of \$96/t AMD sludge DW
- Refining cost = \$65/t: estimated profit = \$30/t
- 61% (dry weight) are the more valuable critical and heavy Rare Earth Elements
- We estimate that a commercial refinery would recover its CapX and OpX within 2.5 years

Typical AMD treatment and sludge handling

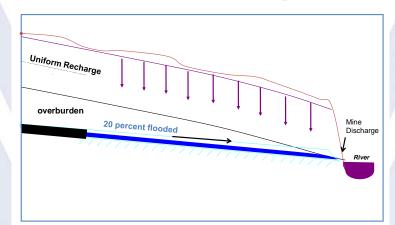


AMD sludge dewatering cell in Central WV In-situ value = \$1.3 million



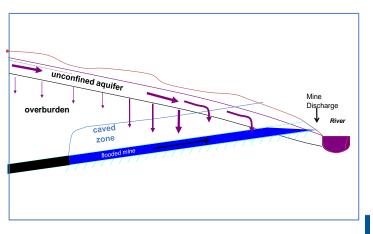
AMD treatment

Acid mine drainage: TREE Concentration vs. raw water pH

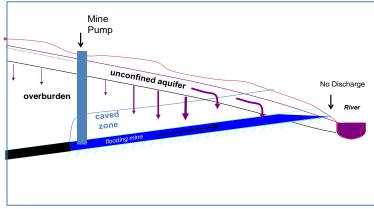


The WVU Energy Institute | energy.wvu.edu

UG mine Flooding status controls REE concentration


Low pH, hi REE

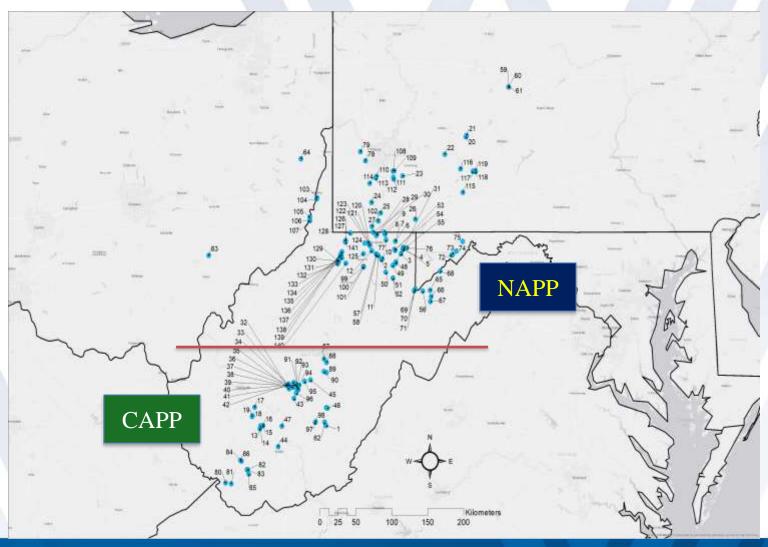
Unflooded, Free Draining



High pH, low REE

Flooded High Dilution

Flooded Mine Low Dilution


Heavy REEs are generally more valuable than light

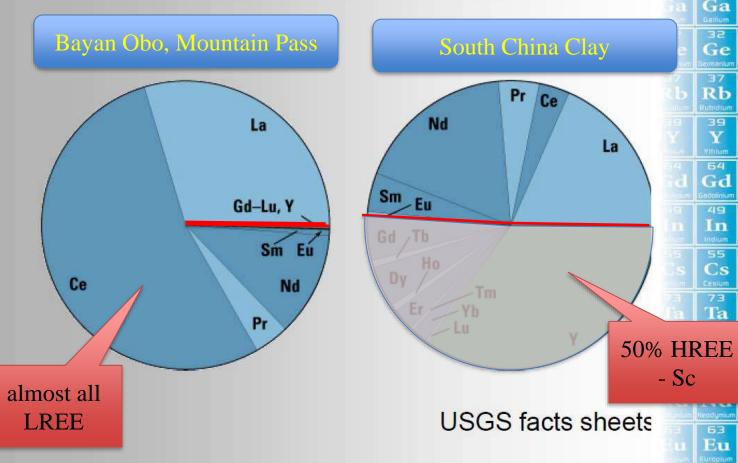
Rare Earth Elements

			Lig	ght		Critical											
Н			He	avy		*Unstable									He		
Li	Ве											В	С	Ν	0	F	Ne
Na	Mg											Al	Si	Р	S	Cl	Ar
К	Са	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Ι	Xe
Cs	Ва	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Fr	Ra	Ac															
			Ce	Pr	Nd	Pm*	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
			Th	Ра	U	Np	Pt	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	

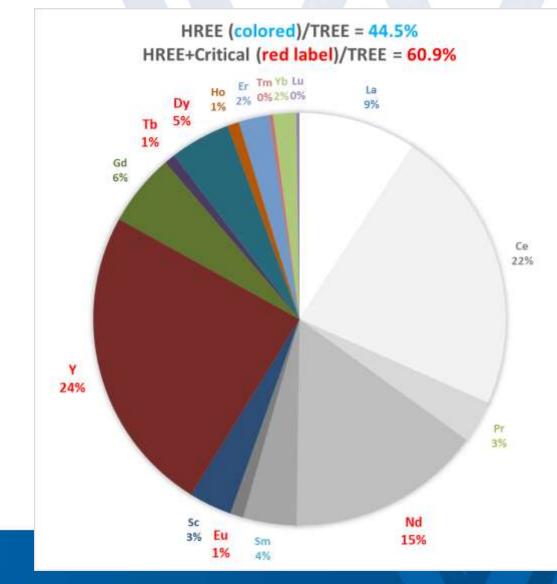
Sampled locations: 140

CAPP VS. NAPP:

Little difference between REE distribution or total concentration (g/t)

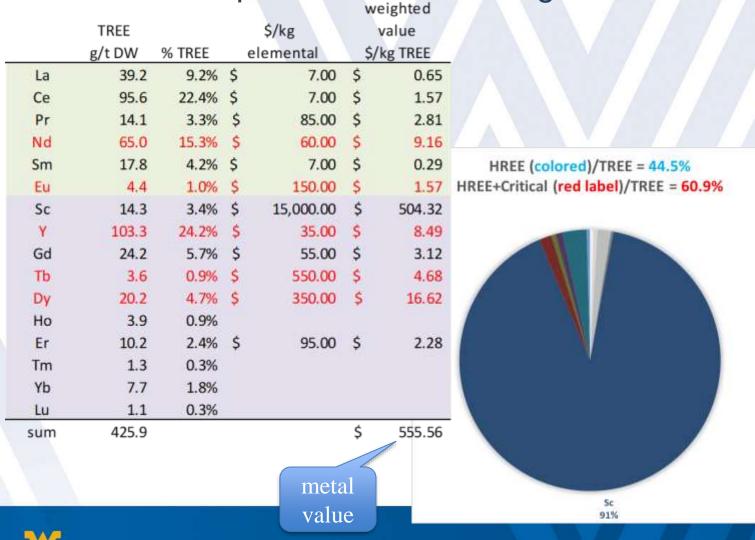

Sites sampled:CAPP42NAPP110

	CAPP	NAPP	All
La	41.4	38.4	39.9
Ce	97.1	95.0	96.0
Pr	14.4	14.0	14.2
Nd	66.5	64.5	65.5
Sm	18.2	17.6	17.9
Eu	4.4	4.5	4.4
Sc	12.8	14.9	13.8
Υ	88.6	108.7	98.7
Gd	23.9	24.3	24.1
Tb	3.4	3.7	3.6
Dy	18.8	20.7	19.8
Но	3.5	4.0	3.8
Er	9.1	10.7	9.9
Tm	1.0	1.4	1.2
Yb	6.7	8.1	7.4
Lu	0.9	1.2	1.0
TREE	410.6	431.6	421.1



Distribution of HREE in AMD sludge is similar to south China clays

Relative proportions of REE in carbonatites vs laterites



Heavy and Critical REEs n=155 % dry weight

REE concentrations and weighted in situ value (n=155). LREE HREE Critical

Scandium represents 91% of weighted value.

In situ sludge value=market value of REEs excluding transport and processing

Small AMD sludge drying cell 0.5 ac, 10 ft deep, 80% moisture Sludge DW 1,300 t \$190/ton of sludge DW In situ REE value = \$247,000

Accessibility/extractability/dewatering

WVDEP-Omega AMD treatment site 14 Geotubes in cell: In-situ value \$182,700

One Geotube						
length		140	ft			
width		20	ft			
height		5	ft			
volume		396	m ³			
moisture		65%				
mass Dry Weight		146	t			
REE mass		58	kg			
in-situ value	\$	225	/ kg			
in-situ value	\$	13,050				

Google Earth

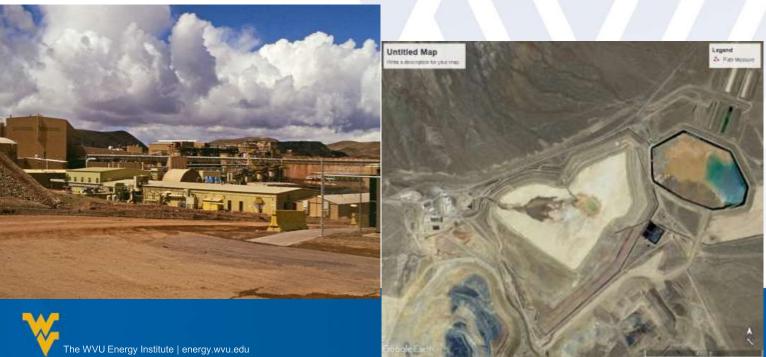
Estimated REE production CAPP/NAPP 155 sites

Sludge cells sample	155		
Sludge		2,344,452	m ³
solids content		21%	
Sludge		519,413	tons DW
average TREE grade		419.1	g/t
TREE		217,686	kg
in-situ value	\$	225.00	/kg TREE
in-situ TREE value \$		48,979,379	

		Sampled			
All Sites	Units	sites (n=140)	est. total APP ¹	est. total APP ²	
Total Q	L/sec	6,221	94,838	418,000	
% total APP Q			6.56%	1.49%	
Total TREE flux	kg/year	41,395	631,059	2,781,412	
In-situ value/year	@ \$225/kg TREE	9,313,905	141,988,220	625,817,729	
¹ APP basin AMD discharge (Q) per this study					

²APP basin AMD discharge (Q) per Stewart et al., 2017

Next Step: Refine and separate REEs to commercial grades


REE Recovery

- 1. Acid Leaching
- 2. Solvent Extraction
- 3. Economics

Ore processed at its acid heap leach and solvent extraction plant

Gold mine near Battle Mt., NV

Revenue potential: two scenarios (we are in the early stages of optimizing the modular plant)

Parameter	modular plant	Centralized plant			
	6.25 t/hr	2100 t/day			
sludge feed grade	425 g/t, 65% moisture				
overall process recovery	87.2	20%			
weighted average metal quotation	\$225/kg REE				
inherent value	\$96/t plant feed				
realization	\$6100/t concentrate				
REE concentrate production	E concentrate production 1.36 t/day				
internal rate of return	10%				
payback period (operating years	18.5 years	2.5 years			
Net present value (1=10%)	\$ 47,217	\$ 63,454,000			

Questions?

Paul Ziemkiewicz, PI Director, WVU Water Research Institute Morgantown WV <u>pziemkie@wvu.edu</u> 304 293 6958

