

Proudly Operated by Battelle Since 1965

Objectives and Design Solutions of a 1000-year Evapotranspiration-Capillary Surface Barrier System

Z. FRED ZHANG, DAWN M. WELLMAN

Pacific Northwest National Laboratory

2017 National Meeting of the American Society of Mining and Reclamation, Morgantown, WV *What's Next for Reclamation?* April 9 - 13, 2017

Proudly Operated by Battelle Since 1965

Background - Surface mining

- Alters the vegetation, soils, bedrock, and landforms
- Changes the surface hydrology, groundwater, and flow paths

Surface Mining - Problems

- Surface
 - Loss of vegetation
 - Loss of soil
 - Erosion
 - Runoff
 - Stream pollution
- Subsurface
 - Acid drainage
 - Groundwater contamination

Mine Land Reclamation with Surface Barriers

Proudly Operated by Battelle Since 1965

- Surface Barrier (Cover, Cap)
 - covers the exposed rocks
 - **isolates** rockpile/tailing
 - reduces erosion
 - provides a medium for vegetation growth
 - reduces drainage

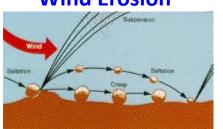
Surface Barrier Use on Mine Land

Soil covers for tailings impoundments, waste rock piles, backfilled pits and heap leach pads (Rykaart et al. 2006)

Continent	Country	Number of Cases
North America	Canada	40
	United States	85
South America	Brazil	4
	Chile	2
Africa	South Africa	13
Europe	Sweden	6
	United Kingdom	2
	Germany	18
	France, Czechoslovakia	1 each
	Greece, Norway, Spain	1 each
Australia	Australia	18
Asia	Indonesia	5
	China	1
Total		200

Barrier Design Challenges

Proudly Operated by **Battelle** Since 1965


Regulatory requirements

Recharge Control

Wind Erosion

Water Erosion

Animal Intrusion

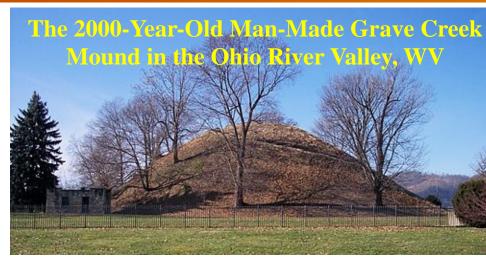
Plant Intrusion

Human Intrusion

Waste isolation

www.shutterstock.com - 269000930

Maintenance



Proudly Operated by Battelle Since 1965

Objectives

- Introduce performance objectives and the design solutions for a long-term (1000 yr) surface barrier
- Evaluate the performance of the surface barrier after a demonstration of 20 years

Performance Objectives of a Surface Barrier over a Nuclear Waste Site

Proudly Operated by Battelle Since 1965

Objectives

Regulatory Requirements: -

Functionality Requirements:

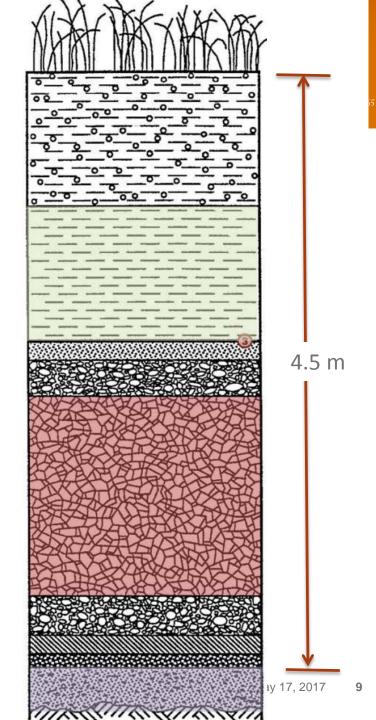
Longevity Requirements:

#1 Meet or exceed RCRA criteria

#2 Function in a semiarid to subhumid climate

#3 Limit drainage to less than 0.5 mm yr⁻¹

#4 Limit runoff

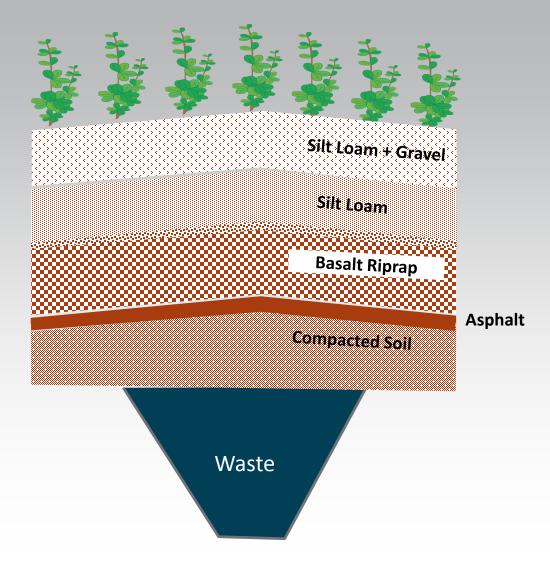

#5 Minimize erosion

#6 Minimize biotic intrusion

#7 Have a design life of 1000 years

#8 Be maintenance free

- Objective #1: Meet or exceed RCRA criteria
 - **■** thickness > 0.91 m;
 - design life: 30 years;
 - conductivity: <32 mm/yr</p>
- Design Solution
 - thickness of 4.5 m;
 - design life of 1000 year;
 - drainage rate < 0.5 mm/yr
 - containing a coated asphalt concrete (AC)



- Objective #2:
 - Function in a semiarid to subhumid climate
- Design Solution:
 - Use a ETC barrier with 2-m-thick silt loam
 - The compacted clay barrier may not work

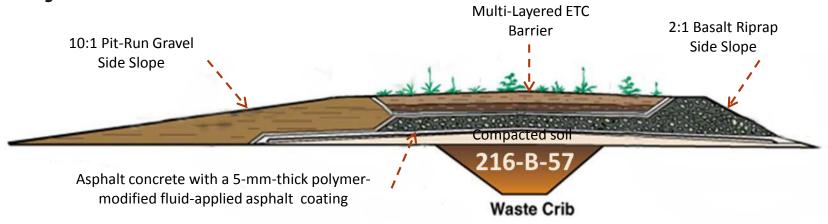
AI = P/PET

Classification	Aridity Index	
Hyperarid	AI < 0.05	
Arid	0.05 < Al < 0.20	
Semi-arid	0.20 < Al < 0.50	
Dry subhumid	0.50 < Al < 0.65	

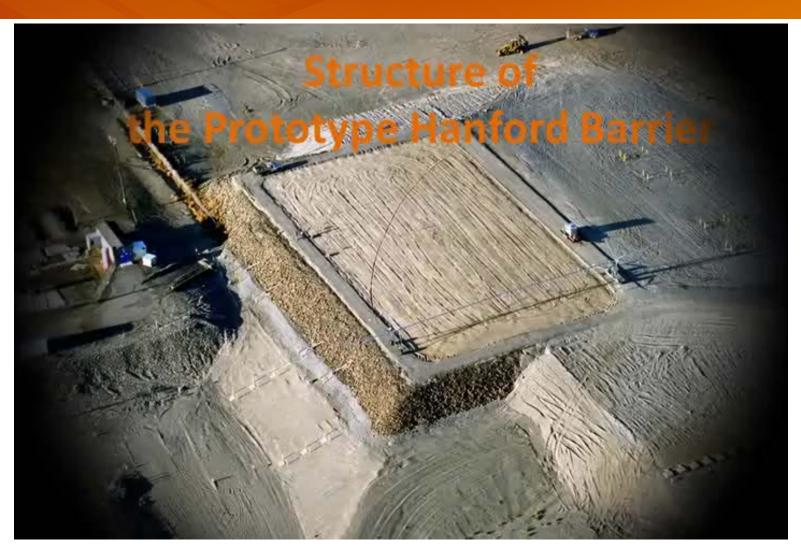
- Objective #3:
 - Minimize drainage rate to <0.5 mm/yr
- Design solution
 - 2-m thick ET barrier
 - Capillary break
 - 2% slope of barrier surface

- Objective #4: Limit runoff
- Design solutions
 - Use soil with sufficient large permeability

- Objective #5: Minimize erosion
- Design solution
 - 15% gravel mix
 - vegetation


- **▶** Objective #6: Minimize biotic intrusion
- Design solutions
 - 1.5-m riprap layer
 - asphalt concrete layer

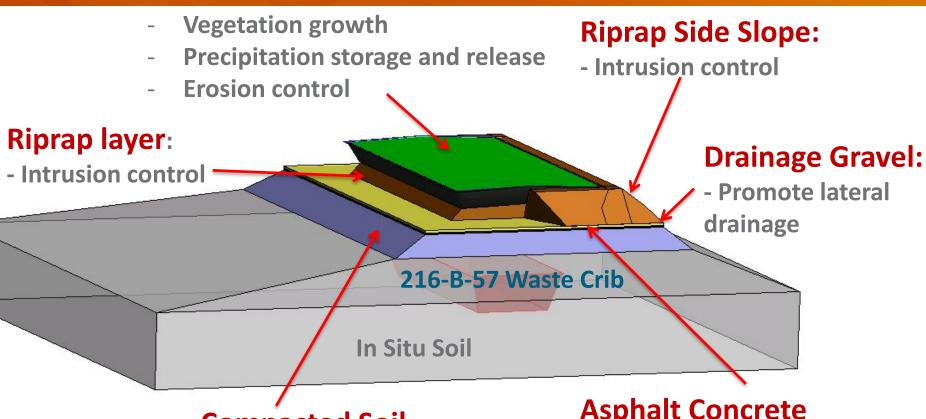
- Objective #7: Have a design life of 1000 years
- Objective #8: Be maintenance free



- Design solution
 - Use natural materials for barrier construction: soil and rock
 - Establish a natural ecological system: ETC Barrier
 - Include protective side slopes

Barrier Design: 3D

Proudly Operated by Battelle Since 1965


May 17, 2017 16

Functions of Barrier Components

Proudly Operated by Battelle Since 1965

Silt Loam + Gravel:

Compacted Soil

- Settlement control

Asphalt Concrete

- **Drainage interception**
- Noxious gas control

2X vertical exaggeration

May 17, 2017 17

Tests

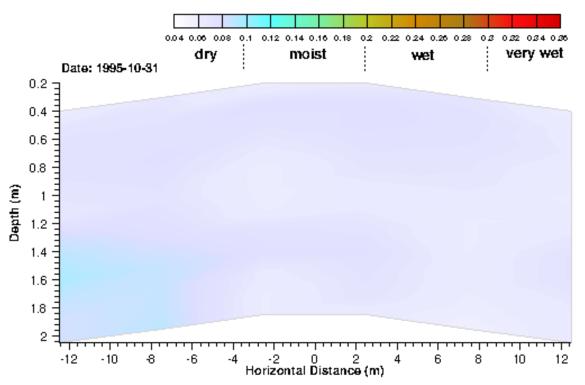
Proudly Operated by Rattelle Since 100

► Treatability test

- Nov. 1994 to Oct. 1997
- Irrigated the north section to about 3x the average precipitation (3x160 = 480 mm/yr)

Controlled burn

- The north section was burned in Sept. 2008
- ► Monitoring: 1994 to 2013

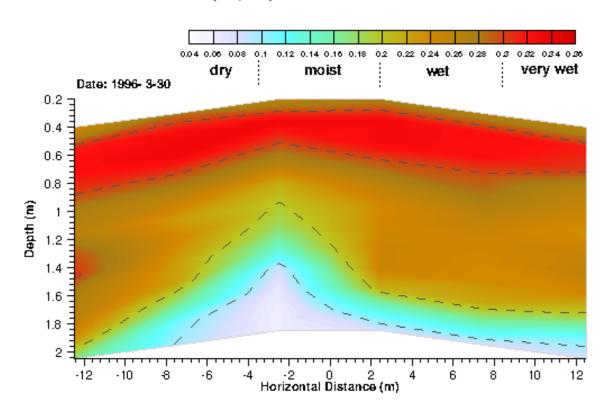


May 17, 2017 May 17, 2017 **18**

Results: Soil Water Content Dynamics (10/95-3/96, irrigated)

Water Content (m³/m³)

- Soil became wetter
- Top 0.7 to 1 m was very wet
- Lower portion was still moist in late spring
- Water was diverted away from the center line

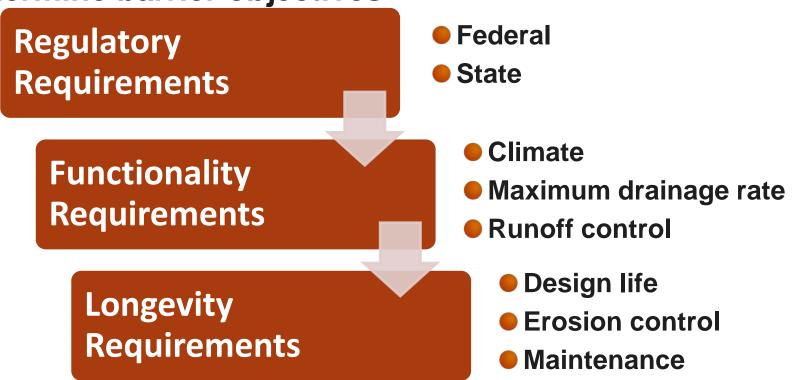

Click to play video

May 17, 2017 19

Soil Water Content Dynamics (4/96-10/96, irrigated)

Water Content (m³/m³)

- Soil became drier spring/summer
- Entire-soil profile became dry
- ET used up all the stored water


Click to play video

May 17, 2017 **20**

Summary - Design Barriers for Mine Lands

Determine barrier objectives

- Design surface barriers to achieve the objectives
 - Type, Complexity

Proudly Operated by Battelle Since 1965