A Feasibility Study for the Automated Monitoring and Control of Mine Water Discharges

2017 WV Mine Drainage Taskforce

Chris Vass Aaron Noble, PhD Mining Engineering West Virginia University

Morgantown, WV April 11, 2017

Presentation Outline

Automated Outlet Treatment

Challenges in CAPP

Remote Locations

No Utilities

Area/Access Limited by Topography

Several parameter limits: pH TSS, Fe, Al, Mn, etc.

- Lab Results Take Time

✤ Traditional Practices in CAPP

Rob

Not an environmental chemist, but knows practical water treatment.

Can get to the remote locations, but takes time.

May make it to problematic sites once or twice per day.

Not available 24/7/365.

Will eventually retire or find another job.

ℜResearch Objectives

Problem Statements:

- □ Given the unique environmental challenges in CAPP, traditional methods of water monitoring and treatment are costly and inefficient.
- □ The current and future regulatory trajectory may deem many of these practices cost prohibitive.

Research Objectives:

Evaluate the technical and economic feasibility of automated monitoring and advanced control algorithms for chemical treatment of mine water discharges

Seneric pH Control Diagram

Automated Outlet Treatment BENCH-SCALE SYSTEM CONSTRUCTION

Reactor

Conductivity Sensor

pH Sensor

Transmitters/Power Supply

DAQ Unit

Supply Pump

Treatment Pump

Baffle

Installed Baffle

Wench Scale Model

Automated Outlet Treatment

MAMDANI FUZZY CONTROLLER

Several advanced pH control techniques exist; however, they are currently unproven in a mine environmental setting.

Fuzzy Logic - Basics

□ Use of non-precise classes to segment process behavior

Membership Functions

Doesn't neglect "Rob's" intuition, 30+ years of AMD research, or the real-time data...

Automated Outlet Treatment

RESULTS & DISCUSSION

WpH Control – Experimental Tests

Test No.	Simulated Condition	
1	Normal field Operations under steady state conditions	(
2	Unsteady flow rate	
3	Changing pH set point	(
4	Large surge in flow rate that interrupts flow recording device	
5	Change in feed water pH	(
6	Removal of pond baffle	
7	Multiple disturbances/perturbations	

Define acceptable range as ±0.5 pH point.

🏽 pH Control – Steady State

PH Control – Varying Flow Rates & Set Point

Automated Outlet Treatment

ONGOING WORK & CONCLUSIONS

□ Implementation of control scheme at AMD treatment site

Summary & Conclusions

- Environmental monitoring and treatment costs can be significant and require perpetual attention.
- Laboratory tests have shown that fuzzy logic is a feasible control option.
- □ The controller used in this testing was able to withstand multiple perturbations and maintain pH within ±0.5.

For more information, please contact:

Chris Vass

crvass@mix.wvu.edu

Acknowledgements:

west virginia department of environmental protection