

Exploration of a Multi-Sensor Approach for the Detection and Mapping of Coal Mine Fires in the United States

Alex Sivitskis AmeriCorps Member – GIS and Remote Sensing Denver, CO

Coal Fires: A Global Occurrence

- Worldwide distribution
- Natural spontaneous combustion
- Influenced by mining activity

From Huo 2015

The Costs of Coal Fires

Environmental:

- Subsidence
- Scarred landscapes
- Pollution

Public Health:

- Respiratory
- Dangerous temperatures

Economic:

Loss of resources

Often poorly reported

Need citation

OSMRE Current Fire

<u>ب</u>

Legend

100 200

0

N

eAMLIS Underground Mine Fire

400 600 800

Miles

- eAMLIS Underground Mine Fire		
MOUUU	228	
		<u>۱</u>
Location:	364,889.223 1,843,507.270 Meters	3
Field	Value	-
FID	83	
Shape	Point	
AMLIS_Key	MO000228	
tate_Tribe	MO	
County	MONROE	
ongression	9	
uadrangle	PERRY	
Watershed	SALT	
HUC_Code	07110007	
FIPS_Code	29137	
Latitude	39.45694444444	
Longitude	-91.741666666667	
unding_Sou	SEA	=
roblem_Are	PERRY MINE FIRE	
roblem_A_1	228	
lanning_Un	SALT RIVER	
lanning_1	22	
roblem_Pri	1	
roblem_Typ	UMF	
ining_Type	S	
Ore_Types		
ate_Prepar	9/7/2001 12:00:00 AM	
ate_Revise	5/20/2011 1:48:59 PM	
rivate_Own	100	
tate_Owner	0	
ther_Feder	0	
ark_Servic	0	
orest_Serv	0	
ndian_Owne	0	
LM_Owner	0	
nfunded_St	0.000000000	
nfunded_Co	0.000000000	
nfunded_GP	0.000000000	-
Identified 1	feature	1

Identify

: 📀 eAMLIS Underground Mine Fire 💌

Investigation Proposal

- Problem
 - -Incomplete records
 - -Limited scope of spatial data
- Remote Sensing Solution
 - -Improve spatial data
 - -Enhance understanding of fire dynamics and history
 - -Inform future reclamation efforts & decision making

Remote Sensing of Coal Fires

- Airborne Thermal Infrared
 - -In use since the 1960's
 - -High spatial resolution and control
 - -Individual tasking
- Spaceborne Thermal Infrared
 - -Coarser spatial resolution
 - -Constant collection
 - -Freely available data

From Kolker 2009

Generalized Workflow

- Acquire Data
 - -Process to temperature
- Find thermal anomaly
 - Differentiate from background temperatures
 - •Geographic subsets
 - Hotspot image stacking
- Delineate a fire boundary

Common Sensors in Coal Fire Research

- ASTER
 - -Derived kinetic surface temperature (KST) products
 - -90m spatial res
 - -Success mapping surface fires
- •Landsat 7 & 8
 - -Requires preprocessing for KST
 - -30m spatial resolution
 - -Success mapping of underground fires

ASTER

• Basics

-Advanced Spaceborne Thermal Emission and Reflection Radiometer

-Wide scale applications:

- Archaeology
- •Geology
- Hydrology
- •Natural Hazards
- •Landuse
- Bands
 - -3 15 m bands in Visible & Near-infrared (VNIR)
 - -6 30 m Shortwave Infrared (SWIR)*
 - -5 90 m Thermal Infrared (TIR)

Wise Hill Fire (Craig CO)

From Renner 2005

- Past fire suppression initiatives
- Four distinct fire zones
- Features including vents and fractures
- CO levels at ~200-300ppm
- Elevated surface temperatures from <u>125-600°F</u>

ASTER Detection

Scene Used: AST_08_00310232011050536 _20161201080942_27454 Method: geographic subsets

Wise Hill Fire Detection: Geographic Subsets

Wise Hill Detection Results

From Renner 2005

2005 field derived Fire Area

ASTER TIR Detection

Landsat

Wavelength (nm)

Bandpass wavelengths for Landsat 8 OLI and TIRS sensor, compared to Landsat 7 ETM+ sensor Note: atmospheric transmission values for this graphic were calculated using MODTRAN for a summertime mid-latitude hazy atmosphere (circa 5 km visibility).

Landsat 7 Data Methodology

• Image Processing

- -Convert DN to at sensor radiance (ASR) (Irish 2000)
- -Convert ASR to at sensor brightness temperature (ASBT) (Irish 2000)
- -Calculate Emissivity (Choudhury et al. 1994)
 - Proportion of Vegetation from NDVI
- -Convert to surface kinetic temperature (Prakash 2011)
- Fire Detection
 - -Multi -temporal approach
 - •Ten scenes collected 2002-2003
 - -Set threshold & identify hotspots
 - •Experimentally set at 10% (Prakash 2011)
 - -Image Stacking (Prakash 2011)
 - -Delineate fire area boundary

1 frame

4 frame stack

16 frame stack

IHI #3 Fire (Rifle CO)

From Renner 2005

- Numerous abatement activities
- East and West fire zone
- Features including vents, fractures, subsidence
- Elevated surface temperatures from <u>125-500°F</u>

Landsat 7 ETM+ Detection

Scene: ten "cloud-free" scenes from 2002-2003 Method: hotspot image stacking

IHI#3 Fire Detection: Hotspot Image Stacking

IHI#3 Detection Results

From Renner 2005

2005 field derived Fire Area

Landsat 7 ETM+ TIR Detection

Conclusions

•Need for improvement in mine fire spatial data

- •TIR Spaceborne Remote sensing can:
 - -Delineate fire boundaries
 - -Enhance multi-temporal studies
 - -Future: be streamlined for time & cost efficiency

Future Steps: Automation via Google Earth Engine

Works Referenced & Additional Reading

- Choudhury, Bhaskar J., et al. "Relations between evaporation coefficients and vegetation indices studied by model simulations." *Remote sensing of environment* 50.1 (1994): 1-17.
- Harriman, Lindsey. Terrain Data at the LP DAAC (fire applications) Webinar. Accessed 03/06/2017 : https://lpdaac.usgs.gov/terrain_data_lp_daac_fire_applications
- Huo, Hongyuan, et al. "A Study of Coal Fire Propagation with Remotely Sensed Thermal Infrared Data." *Remote Sensing* 7.3 (2015): 3088-3113.
- Huo, Hongyuan, et al. "Detection of coal fire dynamics and propagation direction from multi-temporal nighttime Landsat SWIR and TIR data: A case study on the Rujigou coalfield, Northwest (NW) China." *Remote Sensing* 6.2 (2014): 1234-1259.
- Irish, Richard R. "Landsat 7 science data users handbook." *National Aeronautics and Space Administration, Report* 2000 (2000): 415-430.
- Kolker, Allan, et al. *Emissions from coal fires and their impact on the environment*. No. 2009-3084. US Geological Survey, 2009.
- Prakash, Anupma, et al. "A remote sensing and GIS based investigation of a boreal forest coal fire." *International Journal of Coal Geology* 86.1 (2011): 79-86.
- Renner, Steve. "Report on the status of fires at abandoned underground coal mines in Colorado." Unpublished report of the Colorado Division of Mineral and Geology, 41pp (2005).
- Stracher, Glenn B., Anupma Prakash, and Ellina V. Sokol, eds. *Coal and Peat Fires: A Global Perspective: Volume 3: Case Studies–Coal Fires*. Elsevier, 2014.