

A UNIQUE RESEARCH PROGRAM in Québec

Passive treatment of highly contaminated iron-rich acid mine drainage

C.M. Neculita¹, T.V. Rakotonimaro¹, B. Bussière¹, T. Genty¹, G.J. Zagury²

¹ RIME, UQAT - University of Quebec in Abitibi-Temiscamingue
 ² RIME- Polytechnique Montréal, Department of Civil, Geological, and Mining Engineering

Task Force-ASMR-ARRI Joint Symposium 2017, April 13, WV, USA

Outline

- o Context: Fe-rich AMD
 - Occurrence
 - Passive treatment
- Case studies
 - I) Lorraine mine site: lab vs field testing
 - II) East Sullivan mine site: 14 y water quality evolution
- Concluding remarks

Mine sites rehabilitation

- Step 1: <u>Control</u> AMD generation
 - <u>Limit the availability</u> of one (or more) of the three main contributing factors (<u>sulfides, oxygen & water</u>), or control tailings temperature
 - Example of developed methods
 - Oxygen barriers (case study I and II)
 - Water infiltration barriers
 - Desulphurization
 - Thermal barriers

RIME UQAT-POLYTECHNIQUE Research Institute of Mines and Environment

(Bussière and Aubertin, 2016)

Mine sites rehabilitation

- Step 2: <u>Passive treatment</u> of generated AMD
 - Limestone/dolomite drains (DOL)
 - pH and alkalinity increase, metals (and sulfate) precipitation
 - Passive biochemical reactors (PBRs)
 - Metals and sulfate removal
 - Wetlands [(an)aerobic]
 - Polishing of residual contaminants
 - + NEWER → Dispersed alkaline substrate (DAS) reactors: mixtures of highly porous (wood chips) and alkaline (calcite, MgO) materials
 - Pre-treatment of high contamination loads

(Ayora et al., 2013; Genty, 2012)

Pilot-scale DAS reactors (T1-T3)

Examples of Fe-rich AMD

Comparison of **some of the most acidic waters and highest concentrations of metals** derived from tailings pore water, surface water, and underground mine workings (Moncur et al., 2005)

Parameter (g/L) (except pH)	рН	Cu	Zn	Cd	As	Fe _t	SO4 ²⁻
Sheridan tailings (pore water), MB, Canada		1.6	55	0.1	0.05	129	280
Heath Steele (tailings pore water), NB, Canada	0.80	0.6	6	n/a	n/a	48	85
Genna Luas (surface water), Sardinia, Italy	0.60	0.22	10.8	0.06	0.07	77	203
Iron Mountain (mine shafts/drifts), CA, USA	-3.6	4.76	23.5	0.21	0.34	141	760
Other sites (mine shafts/drifts/pore water)	0.67	468	50	0.04	22	57	209
Parameter (<mark>g/L</mark>) (except pH)	рН	Cu	Zn	Cd	As	Fe _t	SO4 ²⁻
Lorraine mine site, QC, Canada (Potvin, 2009)	3.6	n/a	0.8	0.4	n/a	6.9	15
East Sullivan mine site, QC, Canada (Germain et al., 1994)	2	n/a	n/a	n/a	n/a	7	17
*Carnoulès, France (Giloteaux et al., 2013)	1.2	n/a	n/a	n/a	12	20	29.6
Iberian Belt Pyrite, Spain (Macias et al., 2012)	3	0.005	0.44	n/a	n/a	0.3	3.6

Case study I: Lorraine mine site - Historic, Progressive Rehabilitation

Lorraine mine site: historic

1964-1968 : Cu, Au, Ag, Ni

acid-generating tailings: 15.5 ha (up to 6 m)

(Nastev & Aubertin, 2000)

Lorraine mine site: rehabilitation

- Control AMD generation
 - Multilayer cover
- Passive treatment of Fe-rich AMD
 - Phase I: dolomite and calcite drains (1999) chemical
 - Phase II: 3-unit system (2011) biochemical
 - Phase III: DAS reactors (?) biochemical

• Passive treatment of Fe-rich AMD: challenges

- Limited space, topography, high water table
- Abundant precipitation, harsh winter (7-8 months)
- <u>Lab testing required</u> prior to construction of a field system

Lorraine mine site: rehabilitation

- 1999: <u>CCBE</u> (cover with capillary barrier effect = O₂ barrier): <u>control</u> AMD generation
- 1999: 3 <u>Dolomite drains</u> (Dol-1 to Dol-3) and 1 calcite drain (Cal-1): <u>passive treatment</u> of Fe-rich AMD (Phase I)

– pH 3.6, 7 g/L Fe, 15 g/L sulfate

Research Institute of Mines and Environment

Dolomite drains: design

υφάτ-ρο

Research Institute of Mines and Environment

Trenches filled with dolomite (70 %) (20-60mm)

• HRT (Dol-1 & Dol-2): 10 to 20 h

(Fontaine, 1999; Maqsoud et al., 2007)

Cal-1, Dol-1, and Dol-3

Figure 9 A) View of drain Cal-1 output, May 1999. B) Idem, but in June 2001. C) View of drain Dol-3 output, May 1999. D) Idem, but in June 2001. E View of drain Dol-1 output, June 2001. Notice the iron hydroxides precipitates in the trenches.

(Bernier et al., 2002)

Dolomite/calcite drains: 1999-2001

Tableau 3 Influent and effluent average pH, alkalinity and acidity.

Sample 1999 (n=7)		2000 (n=6)					
Sample	pН	Alkalinity	Acidity	рН	Alkalinity	Acidity	
PO-6	3.17 (0.47)	0	5239 (341)	3.78 (0.36)	0	4525 (918)	
Cal-1 out	6.72 (0.08)	470 (63)	0	6.82 (0.09)	468 (32)	0	
Dol-1 out	6.09 (0.14)	145 (192)	116 (307)	6.19 (0.06)	88 (25)	0	
Dol-2 out	5.37 (0.17)	8 (11)	2000 (1920)	5.57 (0.14)	4 (3)	0	
Dol-3 out	4.44 (0.28)	0	2407 (1114)	4.70 (0.07)	0	3478 (878)	
Sampla	2001 (n=6)		2002 (n=4)				
Sample	pН	Alkalinity	Acidity	pН	Alkalinity	Acidity	
PO-6	3.81 (0.57)	0	6293 (1125)	4.16	0	8463 (382)	
Cal-1 out	6.77 (0.06)	456 (47)	0	6.83 (0.08)	529 (61)	203 (26)	
Dol-1 out	6.14 (0.08)	58 (31)	0	6.18 (0.1)	110 (70)	1076 (36)	
Dol-2 out	5.64 (0.08)	4 (6)	3160 (1614)	5.49 (0.07)	5 (10)	4865 (124)	
Dol-3 out	4 74 (0 16)	0	3432 (986)	44(0.08)	0	4760 (576)	

Alkalinity and acidity are in mg CaCO3/L

(Bernier et al., 2002)

Phase II: lab testing (6.7L to 2m³)

3-unit train lab system

- Input Fe: 2-4 g/L
- Output Fe: < 1 mg/L

(Genty, 2012)

Field pilot construction: design

Field pilot construction: within 5 days

Research Institute of Mines and Environment Research Institute of Mines and Environment

E

Field pilot construction: within 5 days

Research Institute of Mines and Environment Research Institute of Mines and Environment

Results: Fe

Monitoring data (2011-2016)

- Metals / metalloids removal
 - Compliance with regulation, except for Fe (and Mn)

Characteristics		As	Cu	Fe	Ni	Pb	Zn	
	рн	(mg/L)						
AMD	4.3 – 6.9	<0.06	<0.003	1 800	0.62	0.19	0.26	
Treated effluent	5.8 – 7	<0.01	<0.003	411	0.06	0.03	0.07	
Best quality (August 2015)	6	<0.01	<0.01	389	<0.004	<0.07	0.06	
Quebec discharge regulation	6-9	0.2	0.3	3	0.5	0.2	0.5	
Compliance with regulation	YES	YES	YES	NO	YES	YES	YES	

Cascade aeration downstream (2016)

Natural wetland downstream (2016)

Dolomite drains: 2016

Dol-1

Dol-2

Phase III: lab testing (2 years)

Step 1 – Batch testing (1 L)

Selection the most efficient DAS

Step 2 – Column testing (1,7 L)

Select optimal HRT (1–5 d); Evaluate k_{sat} and n

Step 3 – Multi-step (10,7 L) Performance evolution

Synthetic AMD: pH 4, 2.5 g/L Fe, 5.4 g/L SO_4^{2-}

Monitored parameters: physicochemical, hydraulic, microbiological, mineralogical

HRT: Hydraulic Retention Time; k_{sat} : permeability; *n*: porosity

DAS reactors and PBRs

- Most efficient mixture: DAS-wood ash
 - ➢ High pH (6.25 7.14) and alkalinity
 - > 4 h of contact time enough, if Fe < 1.5 g/L
 - 6–11h required, if Fe initial > 1.5 mg/L
 - WA50 (50% wood ash, 50 % wood chips): optimal
- DAS- calcite and DAS-dolomite: comparable efficiency
 - DAS- calcite : more efficient than DAS-dolomite, only temporarily
 - C20 (20% calcite, 80% wood chips): used as post-treatment
- Low SO₄²⁻ removal in all reactors

(Rakotonimaro et al., 2016)

Parameters	DAS reactors		PBRs		
	WA50	C20	2.5d HRT (R2.5)	5d HRT (R5)	
рН	5.3–6.3	6–7	6.2 ± 0.5	6.6 ± 0.5	
Alkalinity (mg CaCO ₃ /L)	130–350	16–50	90–2300	430–2800	
Acid neutralisation (%)	62	18–47	66	76	
Fe removal (%)	up to >96	47–73	77	91	
SO ₄ ²⁻ removal (%)	<35	<5	<5	13	

- WA50, R5: maximal efficiency at 5d of HRT
- C20: maximal efficiency at 2d of HRT, temporarily
- Low SO₄²⁻ removal in PBRs

Comparative performance: lab vs. field

• **Multi-step** – Laboratory vs field (Fe and SO_4^{2-} removal)

- Lab: best efficiency with scenario 3
- Field: 91 % Fe (first 2 years), then 53 %
 68 % SO₄²⁻ (first 2 years), then 43 %

Comparative results: lab vs. field

Multi-step – Laboratory vs field (hydraulic evolution)

*k*_{sat} labo = 1–2 order of magnitude higher than *k*_{sat} terrain
 Q variable in field (HRT = variable) ≠ Q lab controlled (HRT = ct)

Comparative results: literature

System type	Design factors	References
Biochemical		
Anaerobic wetland (AnW)	3,5 g acidity/m²/d ; 10 g Fe/m²/d	Hedin et al (1994); Skousen and Ziemkiewicz (2005)
Vertical flow wetland (VFW)	35 g acidity/m²/d	Kepler and McCleary (1997)
PBR (mussel shell) (initial Fe = 65,8 mg/L SO_4^{2-} = 608 mg/L)	29 g SO ₄ ^{2–} /m ³ substrate/d (94%)	McCauley et al (2009)
PBR (calcite) (Following two DAS; initial Fe \approx 35 mg/L; SO ₄ ²⁻ \approx 1000 mg/L)	4–73 g Fe/m³/d, 2–117 g SO₄²⁻/m³/d (≈ 99 %)	Rakotonimaro (2017)
Geochemical		
Anoxic limestone drain (ALD)	15 h residence time; 50 g acidity/t/d	Watzlaf (2004); Skousen and Ziemkiewicz (2005)
Limestone leach bed (LLB)	2 h residence time ; 10 g acidity/t/d	Skousen and Ziemkiewicz (2005)
DAS (C20) (initial Fe = 250 mg/L)	HRT (1 d), 42 % Fe	Rötting et al (2008a)
DAS (C20) (initial Fe ≈ 2000 mg/L)	Fe (73%, HRT = 2 d)	
DAS (C50) - pretreatment (initial Fe = 1800 mg/L)	Fe (67%, HRT = 3 d)	Rakotonimaro (2017)
DAS (WA50) (initial Fe ≈ 2000 mg/L)	Fe (> 89% , HRT = 3 d)	

(Skousen et al., 2017; Rakotonimaro, 2017)

- DAS-wood ash: most efficient for Fe pre-treatment
- 2 units of pre-treatment : more efficient than one
- DAS-calcite and DAS-dolomite: comparable efficiency
- No clogging issues in lab testing
- Treatment performance (lab / field) depends on Q, Fe, SO₄²⁻

Future work

- Excavation of the 3 units and replacement by 2-3 DAS systems
- Mineralogical and microbiological characterization of solids

Case study II: East Sullivan mine site - Historic, Rehabilitation

Imagery ©2015 DigitalGlobe, Cnes/Spot Image, Map data ©2015 Google 2 km

6 km E of the Val-d'Or town, SW QC, Canada

East Sullivan mine site: historic

1990

1942-1979 : Cu, Zn, Au, Ag, Cd

- 15 Mt (200 ha) of tailings, 200kt of acid generating material; 228 ha impacted
- 3.6% S, thickness of 7.3 m in average

http://sebastienlavoie.com/maitrise/photos.html

http://www.mrn.gouv.qc.ca/mines/restauration/restauration-sites-east-sullivan.jsp

East Sullivan mine site

Figure 2. Cross-section A-A' through the East-Sullivan tailings impoundment. Arrows indicate locations of drill holes to the bedrock or clay basement. Dots represent piezometer locations for water sampling.

• Pore-water quality in 1990

- ightarrow pH ≈ 2
- ➢ Fe (Fe²⁺): up to 17 g/L
- > SO₄²⁻: up to 37 g/L
- ➤ Cu, Pb, Zn : 0.1-1 g/L

Figure 3. Profiles of O_2 and CO_2 in pore gases and of pH, Eh, Fe²⁺, SO₄²⁻, Cu, Pb, and Zn in pore-waters at the five selected stations located in Figure 1. The line with the triangle indicates the average water-table depth during the sampling period.

(Germain et al., 1994)

East Sullivan: rehabilitation

- 1984: Wood waste cover
 (prevention and treatment)
- **1990:** Seepage collection system
- o 1992-1996: Confining dike (6 km)
- 1998-2005: "Active" treatment of collected AMD in wetlands
- [2014: Wood cover of the eastern sector, not completed]
 - \Rightarrow Some effluents are still acidic

Figure 1. Map of the East Sullivan tailings impoundment in 1994

East Sullivan: monitoring (2000-2014)

- o 12 sampling points
 - 7 points: dam and settling ponds
 - 5 points: tailings edges
- o Parameters
 - pH, alkalinity, TDS, Fe, Al, Mn, Cu, Zn, Pb, SO₄²⁻
- Compliance, except for the uncovered tailings area

(Rakotonimaro et al., 2015)

- Efficiency of wood-waste cover for over 14 years
- Significant improvement of water quality
- Site presently turning into <u>birds' refugee</u> (southern and eastern ponds, more than 190 species listed)

Future work

- Completion of the eastern part of tailings by woodwaste and sludge (< 10% of total)
- Mineralogical / microbiological characterization of solids
- o Further risk assessment

East Sullivan: 2015

(Rakotonimaro et al., 2015)

Concluding remarks

- Use of residual materials (dolomite, wood ash, compost, manure): low cost
- Relatively easy to install and operate
- Maintenance (more or less) required
 BUT
- <u>Limited performance at high contamination level</u>: multi-step systems (?)
- Unpredictable long-term efficiency
- <u>Solutions not available for sludge management</u>

However, sometimes is the only available option

References

- Ayora, C., Caraballo, M.A., Macías, F., Rötting, T.S., Carrera, J., Nieto, J.-M., 2013. Acid mine drainage in the Iberian Pyrite Belt: 2. Lessons learned from recent passive remediation experiences, Environ. Sci. Pollut. R. 20: 7837-7853.
- Caraballo, M.A., Maciàs F., Rötting, T.S., Nieto, M.J., Ayora, C., 2011. Long term remediation of highly acid mine drainage: a sustainable approach to restore the environmental quality of the Odiel river basin. Env. Pollut. 59: 3613-3619.
- Environmental Protection Agency USA (USEPA), 2017. Industrial effluent guidelines. <u>https://www.epa.gov/eg/industrial-effluent-guidelines</u> (access March 2017).
- Genty, T., 2012. Comportement hydro-bio-géochimique des systèmes passifs de traitement du drainage minier acide fortement contaminé en fer. PhD dissertation. Sci. Appl., UQAT, Rouyn-Noranda, QC, Canada. 248 p.
- Hamilton, Q.U.I., Lamb, H.M., Hallett, C., Proctor, J.A., 1999. Passive treatment for the remediation of acid mine drainage at Wheal Jane, Cornwall. J Water Environ. 13 (2): 93-103.
- Ministère du Développement durable Environnement et Lutte contre les Changement Climatiques (MDDELCC), 2012. Directive 019 sur l'industrie minière. Gouvernement du Québec. 105p.
- Neal, C., Whitehead, P.G., Jeffery, H., Neal, M. 2005. The water quality of the River Carnon, West Cornwall, November 1992 to March 1994: the impacts of Wheal Jane discharges. Sci. Total. Environ. 338: 23-39.
- Skousen, J., Zipper, C.E., Rose, A., Ziemkiewicz, P.F., Nairn, R., McDonald, L.M., Kleinmann, R.L., 2017. Review of passive systems for acid mine drainage treatment. Mine Water Environ. 36 (1): 133-153.
- Rakotonimaro, T.V., 2017. Pretreatment and passive treatment of Fe-rich acid mine drainage. PhD dissertation. UQAT, Canada. 250 p.

Research Institute of Mines and Environment

A UNIQUE RESEARCH PROGRAM in Québec

Énergie et Ressources naturelles Québec 🏘 🕸

Chaire de recherche du Canada sur le traitement passif des eaux minières contaminées

Canada Research Chair on Passive Treatment of Mine Contaminated Water

POLYTECHNIQUE Montréal

MINE RAGLAN UNE COMPAGNIE GLENCORE

