Why Aren't All Reclamationists Considered Ecological Engineers?

Robert W. Nairn and William H.J. Strosnider

The UNIVERSITY of OKLAHOMA Gallogly College of Engineering School of Civil Engineering and Environmental Science

What's Next for Reclamation?

Joint Conference

April 9 - 13, 2017 Morgantown, WV

Why Aren't All Reclamationists Considered Ecological Engineers?

Robert W. Nairn and William H.J. Strospider

Engineer

Not an engineer

A New Way of Thinking

- American Society of Civil Engineers 2017 Infrastructure Report Card
 - Roads, bridges, water and wastewater treatment facilities
 - "Gray" infrastructure

 "Green" or "natural" infrastructure provides multiple technical, social and economic co-benefits

Natural Infrastructure

Natural Infrastructure

 Conservation of intact natural ecosystems

 Creation and restoration of
ecologically
engineered
ecosystems

Green vs. gray infrastructure

North Texas Municipal Water District, East Fork Raw Water Supply Project and John Bunker Sands Wetlands Center

WORLD RESOURC

NATURAL INFRASTRUCTURE

Investing in Forested Landscapes for Source Water Protection in the United States

EDITED BY TODD GARTNER, JAMES MULLIGAN, ROWAN SCHMIDT, AND JOHN GUNN

Cool Green Science

Smarter By Nature

IDEAS

=

Natural Infrastructure: It's Not an Oxymoron

BY CARA BYINGTON OCTOBER 16, 2015 Soliow Cara

From Gray to Green, Investing in Natural Infrastructure to Address Water, Food and Energy Nexus* Challenges

Aptoriton Energy Environment Society

Thematic Areas

Agriculture Climate Change Energy Envitoriment Recent extreme droughts and floods have forced an evaluation of how water infrastructure impacts other sectors, highlighting the need for a multi-disciplinary, cross-sectoral approach to balance environmental, social and economic concerns against a backdrop of climate change.

Investing in natural infrastructure to achieve food, water and energy security can be transformational in making water available for agriculture, electricity generation and water supply. The success of natural infrastructure investments depends on partnerships between sectors and the rise of champions to scale up natural infrastructure to make iter en part of the solution for current and future resource challenges.

The Economic Case for Ecosystems

Green-Gray Analysis for the Portland Water District—Best Case for Green

Infrastructure Options	Quantity	Present-Value Costs (millions)	
Riparian buffers (acres)	367	\$16.33	
Culvert upgrades and replacements (units)	44	\$1.38	
Certification (acres)	4,699	\$0.14	
Reforestation (acres)	9,395	\$14.67	
Conservation easements—80 percent forest cover (acres)	13,215	\$11.85	
Green infrastructure total		\$44.37	
Gray infrastructure (membrane filtration) total		\$155.28	
Savings (green minus gray):		-\$110.91	

Talberth et al. 2013. Green versus Gray: Nature's Solutions to Infrastructure Demands. *Solutions* 4(1): 40-47.

What is Ecological Engineering?

Olentangy River Wetland Research Park The Ohio State University

Approaches to Environmental Problem Solving

Conventional

- Anthropocentric
- Work against natural processes
- Energy-intensive
- Nonrenewable resourceintensive

Innovative

- Mutualistic
- Work with natural processes
- Renewable energy use
- Renewable resource use

Innovative Environmental Problem Solving

Ecology

Study of our house

- Relationships between organisms / environment
- Descriptive science

Engineering

- Application of science to meet societal needs
- Design-oriented
- Prescriptive solutions

Ecologists must <u>apply</u> ecological principles Engineers must <u>understand</u> ecological processes

Ecological Engineering

The design of sustainable ecosystems that integrate human society with its natural environment for the benefit of both

(Mitsch and Jorgenson 2004)

H.T. Odum

The Father of Ecological Engineering, Ecological Economics, and Ecological Modeling 10

NGINEERING

Ecological Engineering

Goals

- Restoration of disturbed or polluted ecosystems
- Development of new sustainable ecosystems with human and ecological value
- Prescriptive approach to problem solving
- ASMR Purpose
 - "encourage and assist... efforts to reestablish, enhance, or protect our natural resources disturbed by mining or other human activities, or... natural events"

Tenets of Ecological Engineering

Self-design

- Ecosystems self-organize to maximize efficiency
- Pay attention to your Mother!
- Biological components
 - Explicitly includes bio-processes and species
 - Including humans!
- Sustainability
 - Solar energy-based
 - Modest human influence
- Integration
 - Blending engineered and natural landscapes

BioSphere 2BiomanipulationPrairie restorationSoil bioremediationWetland creationWetland restorationSolar aquaticsWastewater wetlandsMine land reclamationAgroecological engineeringAgroecological engineering

(Mitsch and Jorgenson 2004)

Soil Restoration (after Bradshaw 1997) Natural soil Restoration Reclamation Natural primary succession **Function** Rehabilitatio **Degraded soil**

Structure

Why Aren't All Reclamationists Considered Ecological Engineers?

Mine reclamationists inherently recognize critical roles of self-design, biological development and sustainability

Reclamationists build ecosystems!

US-based "engineering bias" may play role

Ecological Engineering Case Studies

Wingfield Pines

- Abandoned strip/deep mines
- Golf / swimming
- 80 acres
- Polluted Chartiers Creek for decades

Helping local people save local land

Hedin, 2015 PA-AMRC

Hedin, 2015 PA-AMRC

Hedin, 2015 PA-AMRC

NHE .

Water Treatment Performance

Schroth, 2013 PA-AMRC Hedin, 2015 PA-AMRC

		2003 2010					
	Flow	рН	Fe	Mn	SO ₄	TSS	
	gpm	s.u.	mg/L	mg/L	mg/L	mg/L	
Influent	1,444	6.6	15.1	0.3	311	24	
Pond out	na	7.8	2.9	0.2	303	12	
Wetland out	na	7.9	1.1	<0.1	314	4	

2009 - 2016

True Ecological Engineering

Vibrant Habitat or Maintenance Liability?

- Muskrat and beaver impacts
 - Vegetation
 - Woody growth
 - Macrophytes
 - Flow
 - Berms

 What if design goals were more inclusive?
Treatment "eco"system

Impacts to Water Quality

- Seasonal variability
- Wetland filter less effective in winter
 - muskrats ate much vegetation
 - created swimming channels through wetland
- Vegetation always has come back
 - 2016 densest wetland vegetation to date
- Site owner (Allegheny Land Trust) learned that vegetation comes back so prefers not to "manage" muskrats

June 2016

February 2017

Ecological success conflicts with land use

- Site developed as leash-free dog walking zone
- Passive system very popular dog walking area because of trails (berms)
- Dense summer wetland vegetation attracts birds and bird watchers
- Bird watchers conflict with dogs
- In 2016, Virginia Rail (*Rallus limicola*) nested and fledged young – first time observed in Allegheny County, PA
- In 2017, dogs will be excluded

Tar Creek (OK) Superfund Site

- Part of Tri-State Mining District
- National Priorities List (1983)
- 137-km² watershed
- Elevated Fe, Zn, Cd, Pb, As in water, chat, soils and biota
- Ten Native American Tribes

Tar Creek Surface and **Ground Water Decision** Initial artesian discharges (1979) USEPA concluded that (1984): "impacts to (surface waters) are due to irreversible man-made damages resulting from past mining operations at the site" Fund-balancing waiver used Costs prohibitively high to address surface water contamination

Mayer Ranch Passive Treatment System Tar Creek Superfund Site Commerce, OK

Mean Water Quality Changes

	ln	Out
рН	5.95	7.02
Tot. Alk. (mg/L)	393	224
Net Alk. (mg/L)	29	224
Fe (mg/L)	192	0.13
Zn (mg/L)	11	0.25
Ni (mg/L)	0.97	0.15
Cd (µg/L)	17	<pql< td=""></pql<>
Pb (µg/L)	60	<pql< td=""></pql<>
As (μg/L)	64	<pql< td=""></pql<>
SO_4^{-2} (mg/L)	2239	2057

Receiving stream downstream of system effluent

Receiving Stream Ecological Recovery

2009

- Marked improvement in water quality
- Early indications of return of fish community

2012

Selected Unnamed Tributary fish data (W.J. Matthews, OU Biology)

		Catch per unit ef	ffort (CPUE)
Scientific name	Common name	2005-07	2009-16
Gambusia affinis	Western mosquitofish	39.24	187.60
Lepomis cyanellus	Green sunfish	0.81	16.80
Lepomis macrochirus	Bluegill	1.00	3.00
Lepomis megalotis	Longear sunfish	0.02	6.80
Notemigonus crysoleucas	Golden shiner	0.17	0.60
Lepomis gulosus	Warmouth	0.07	1.0
Lepomis microlophus	Redear sunfish	0	18.00
Lepomis sp.	Sunfish hybrid	0	2.5
Labidesthes sicculus	Brook silversides	0	2.0
Etheostoma gracile	Slough darter	0	0.80
Ameiurus melas	Black bullhead	0	0.40
Fundulus notatus	Blackstriped topminnow	0	0.40
Pomoxis annularis	White crappie	0	0.30
Micropterus salmoides	Largemouth bass	0	0.20
	Species richness	6	14

Passive treatment system as an ecosystem?

Treat - Pond-like cells at MRPTS

Mine - Ponds in abandoned mining area

- Rec Ponds in reclaimed mining area
- Non Ponds not in mining area
- Ref Combination of Mine, Rec, Non

Passive treatment system as an ecosystem?

Group	Kingdom / Phylum	Trophic Level	Dispersal	Sample Method
Plant	Vascular Plants	Producer	Varies	Quadrats
Odonata	Arthropod	Carnivore	Flight	Visual Survey
Amphibian	Vertebrate	Herbivore (larva) Carnivore (adult)	Walking	Aquatic Traps, Acoustic Monitoring, Visual Survey

Vibrant Habitat or Maintenance Liability?

- Muskrat and beaver impacts
 - Vegetation
 - Woody growth
 - Macrophytes
 - Flow
 - Berms

 What if design goals were more inclusive?
Treatment "eco"system

Beaver maintenance of v-notch weir

Beaver deceiver fencing

Beaver deceiver fencing

Southeast Commerce Passive Treatment System, OK Why Aren't All Reclamationists Considered Ecological Engineers?

Perhaps they should be!

AEES Certified Ecological Designer (CED)

- expertise in integration of science of ecology and practice of design
- academic credentials, participation in workshop, portfolio of experience

Bridge the gap between reclamation and restoration

American Ecological Engineering Society

17th Annual Meeting *Ecological Engineering for Adaptation in the Anthropocene*

> May 23 – 25 | Athens, GA | The Classic Center aees2017 uga edu – abstract deadline extended to March 1*

Questions? Comments? Criticisms?

Ecological engineering is the design of sustainable ecosystems that integrate human society with its natural environment for the benefit of both

> MICROBIA DEGRA

INIVERSITY OF GEORGIA

NIVERSITY OF

GEORGIA

Very special thanks to Bob Hedin! HedinEnvironmental

