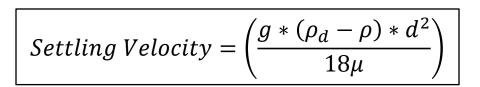
Use of Wetlands for Colloid Destabilization

Brent Means Office of Surface Mining

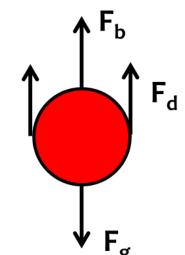
Malcolm Crittenden Pennsylvania Department of Environmental Protection

What we'll discuss


- * Offer a low-cost, but highly effective, solution to settleability issues;
- * But first, we'll review:
 - * Physical Properties of suspended particles and fluids that affect settling;
 - Electrochemical Properties of suspended particles that affect settling;
 - Discuss how some of these properties prevent settling in ponds;
 - Discuss how these same properties can be used to promote suspended particle removal in wetlands

Use of Wetlands in treatment

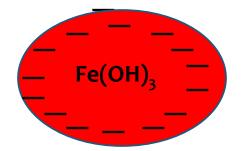
- Researchers at Wright State University and WVU noticed wetlands improved mine drainage water quality (Huntsman et al. 1978, Wieder and Lang, 1982)
- Most of the early work focused on using wetlands to remove dissolved metals and acidity.
- * The majority of NPDES violations is due to suspended solids
- We are going to discuss using wetlands for removing suspended metal precipitates

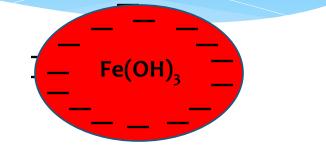

Physical Properties of fluid and particle that affects settling \uparrow^{F_b}

- ρ_d = Particle Density (lbs/ft)
- μ = Viscosity of water
- g = gravitational acceleration (ft/sec²)
- p= Density of water (lbs/ft³)
- **D** = diameter of particles

- Settling velocity of a spheric proportional to its diame
 - large particles settle much 1 (assuming density is equal)

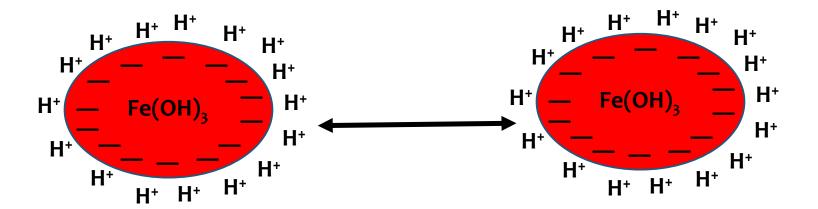
	Diameter (mm)	Settling Velocity (m/s)	Time to settle 1 meter	
Fine sand	.05	2 . 25 x10 ⁻³	7.4 mins	
Silt	.005	2 . 25 x10 ⁻⁵	12 hours	
Clay	.0005	2 . 25 x10 ⁻⁷	51 days	

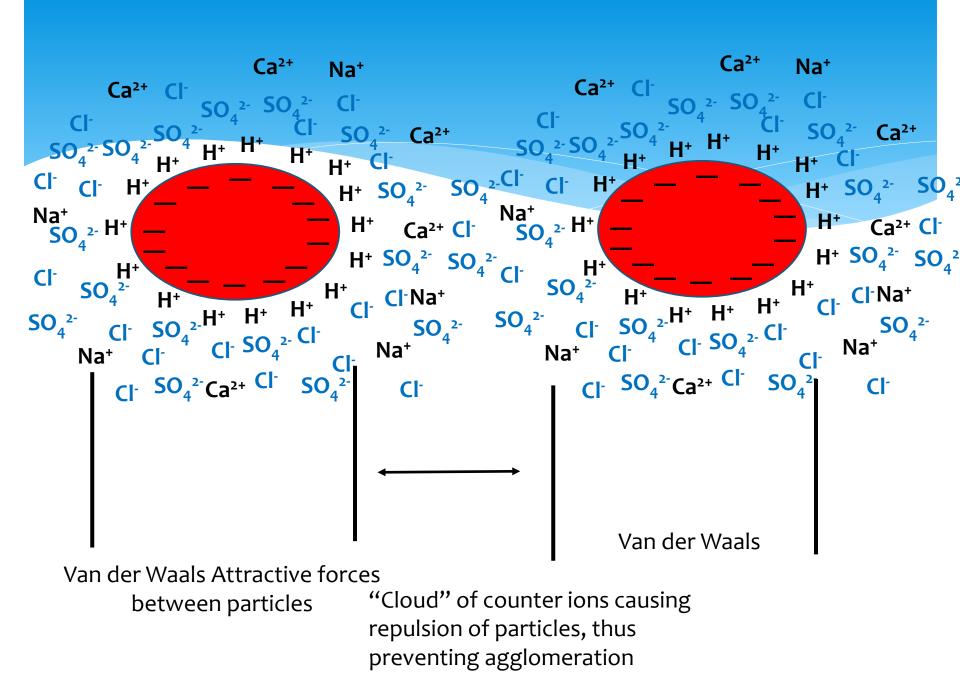

Electrochemical Properties of particle that affect Agglomeration

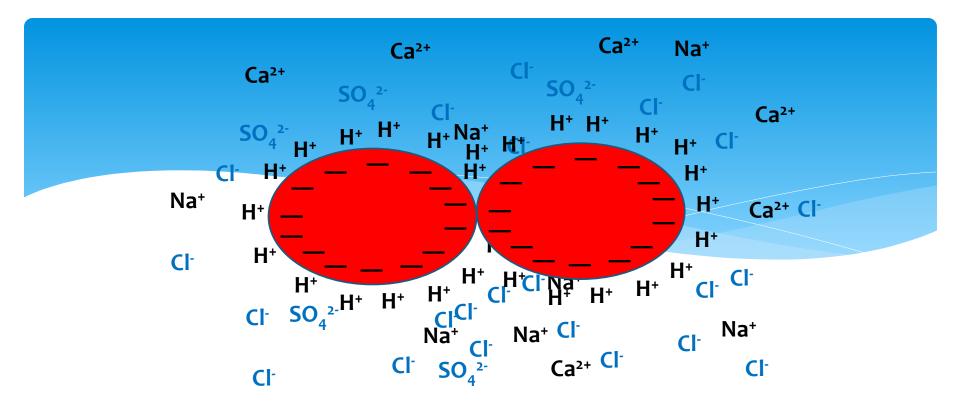

Fe(OH),

Van der Waals Attractive forces between particles

Van der Waals is a universal attractive force which acts to bind particles together

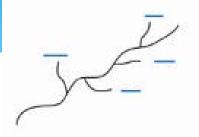

Most metals suspended in water carry a negative "primary" surface charge due to hydroxide


Assume metal oxide particles have an excess of negative ions at its outer surface


Negative surface charge attracts positive ions on the surface

Repulsive Force

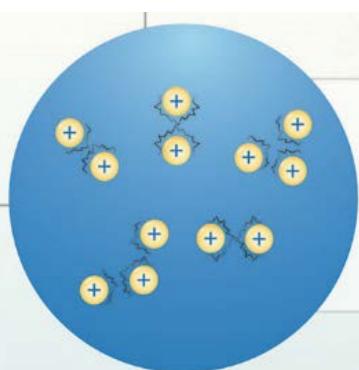
 $Fe-OH + H^+ \rightarrow Fe-OH_{2}^+$



Agglomeration occurs of Attractive forces >> Repulsive forces

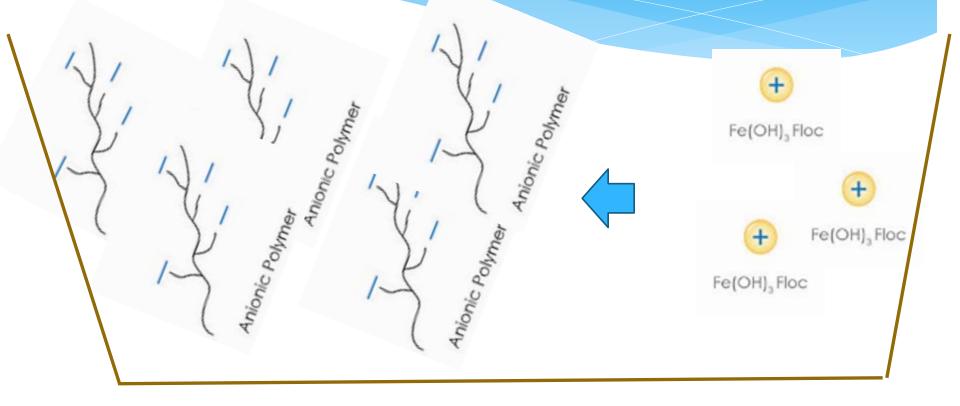
How can we decrease the repulsive forces to promote flocculation and grow the particle diameter to induce gravitational settling?

Add Flocculent to increase Diameter



Anionic Polymer

Agglomeraterated Particles



- * In most "Conventional" treatment we manipulate the diameter by adding a polymer
- Polymer will "bridge" numerous small diameter discrete particles into a single floc with a large diameter
- Polymer is effective, but costly.
- * We need another settling mechanism for unsettled particles

- * 7 acres of settling @ ~ 9.5 days of RT
- * Effluent T Fe ~ 3 to 10 mg/L

Can we design a settling mechanism based on charge imbalance (adsorption)

Don't fight chemistry, work with it!

* Wetland = 1.2 Acres * Design Criteria of 10 g Fe/m²/day

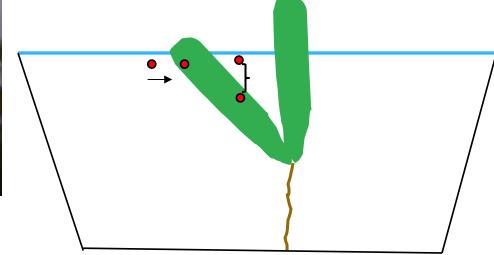
Date	Lab all	Alkalinity	Acidity	Iron	Suspended	
Sampled	Lab pH	mg/l	mg/l	mg/l	Solids	
4/29/2014	8.05	116	-134	0.24	7	
6/20/2014	7.8	166	-36	0.45	6	
7/11/2014	7.7	156	-124	0.24	7	
7/24/2014	7.72	166	-86	0.56	8	
8/4/2014	7.52	162	-94	0.18	6	
9/3/2014	7.62	164	-74	0.22	11	
10/10/2014	7.66	160	-144	0.24	7	
10/21/2014	7.46	150	-130	0.3	8	
11/12/2014	7.69	158	-140	0.33	4	
11/20/2014	7.87	168	-110	0.36	4	
12/3/2014	7.83	160	-100	0.57	6	
12/15/2014	7.75	158	-38	0.5	9	
2/9/2015	7.7	156	-100	1.33	6	
2/16/2015	7.66	164	-80	0.665	9	
3/16/2015	7.6	142	-108	0.384	6	
3/23/2015	7.74	1646	-30	0.29	6	
4/2/2015	7.86	172	-98	0.43	6	
4/17/2015	7.78	190	-156	0.788	4	
5/1/2015	7.53	160	-124	0.441	9	
5/26/2015	7.4	140	-114	<.1	9	
6/5/2015	7.61	138	-112	<.1	4	
6/29/2015	7.57	122	-12	<.1	3	
7/1/2015	7.87	170	-128	0.121	3	
7/15/2015	7.37	168	-90	0.319	8	
8/3/2015	7.56	164	-108	0.123	8	
8/20/2015	7.62	148	-132	0.128	4	
9/7/2015	7.7	144	-37	<0.10	5	
9/20/2015	8.1	162	-124	0.908	7	

Sykesville Wetland

1.5 Acres Cost = ~\$100,000 Design Criteria = 9 g Fe/m²/d

15 2 Contraction Contraction

Wetland Vegetation Planted

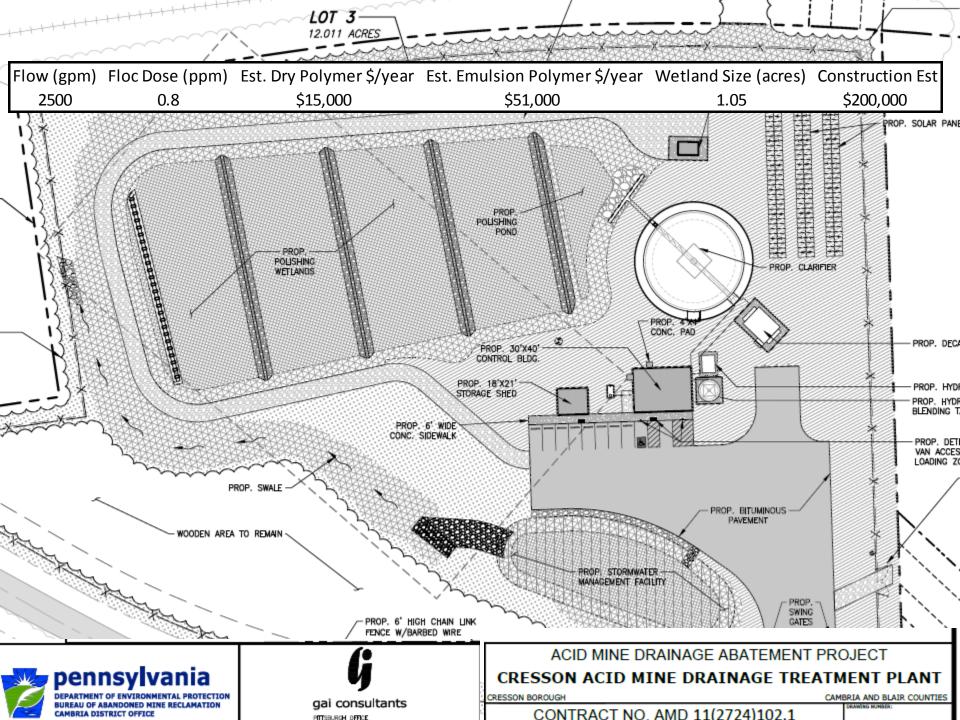

- * Juncus canadensis (Canadian Rush) deer and goose resistant
- * Scripus cyperinus (Woolgrass) prolific seeder
- * Scripus atrovirens (Green Bulrush)
- * Peltandra virginica (Green Arrow Arum) prolific seeder
- * Sagittaria latifolia (Broadleaf Arrowhead/duck potato) vigorous by both sees and rhizomes – muskrat food
- * Scripus validus (Soft-stemmed Bulrush)
- * Sparganium eurycarpum (Broadfruit bur-reed)

Other Possible Wetland Colloidal Removal Mechanism's

* Broadleaf arrowhead

- Decreased settling distance, increased surface area
- Release of Natural Organic Matter (NOM), like humic substances (charge), that promote colloid destabalization

* Woolgrass (density/surface area > cattails)



			Calculate					
7		Date	d Flow	рН	Temp	Alkalinity	T_Fe	D_Fe
1	Sample Location		(gpm)					
	Pond 3 Effluent/Wetland influent	7/20/2016	916	7.06	14.7	133	4.5	4.5
2	Wetland Effluent pipe	7/20/2016		7.36	17.4	140	0.2	ND

Settling Pond transitioning to a wetland for Aluminum Hydroxide Sequestration

