Production of an Iron Oxide Product from Mine Water: 15 Year Report

Robert S Hedin Ted Weaver Hedin Environmental Pittsburgh, Pennsylvania USA

Marchand System, Lowber PA

The production of a high quality effluent from passive systems has always included wetlands

<u>Constructed Wetlands for</u> <u>Wastewater Treatment</u> (D.Hammer) 1989. CRC Press. 856 pp.

Designing and Sizing Passive Mine Drainage Treatment Systems. 1992. WV Mine Drainage Task Force

Passive Treatment of Coal Mine Drainage. 1994. US Bureau of Mines IC 9389

Iron Removal in a Passive System Treating Alkaline Coal Mine Drainage. 2008. Mine Water Env. International Mine Water Association

Iron sludge recovery steps

- 1. Isolate pond
- 2. Remove excess water
- 3. Pump to dewatering unit
- 4. Dewater and dry

Sales Summary

Total sales: 4,840 ton Average sales: 297 ton/yr Pigment portion: 92%

Goethite + heat → Hematite (sienna) (burnt sienna)

Iron Oxide Reactivity

- Sorption and reactivity
 - Metals: As, Cu, Cd, Zn, Pb, more
 - oxyyanions: AsO₄³⁻, PO₄³⁻, SeO₃²⁻, Se₄²⁻
- Redox reactions
 - $Fe(OH)_3 + H_2S \rightarrow FeS + FeS_2 + S^0 + Fe^{2+}$
 - $Fe(OH)_3$ + organics \rightarrow $Fe^{2+} + CO_2$
- Trace mineral and biologically active
- Catalyst

Particle Size and surface area affect pigment strength and reactivity

Laboratory	Material	SA, m ² /g (BET method)
University of Pittsburgh, Environmental Engineering Dept.	Marchand	144 (101-175)
Pennsylvania State University, Materials Science Laboratory	Marchand	125

TRAPPS: Amendment for Pb-contaminated soils

Trial 2: Fall 2015

H₂S Concentrations among treatments - MONTH 2

H₂S Concentrations among treatments - MONTH 3

Use of IO to control H₂S

- React with H₂S
- Raise redox and prevent H₂S formation

Metals of concern in Marchand iron oxide

Element	As	Cd	Со	Cr	Cu	Мо
	ppm	ppm	ppm	ppm	ppm	ppm
Marchand	23	2	4	14	10	< 2
EPA Part 503 limits	41	39	na	1,500	1,500	57
Element	Ni	Pb	Se	Zn	Hg	
	ppm	ppm	ppm	ppm	ppb	
Marchand	9	11	< 3	23	<1	
EPA Part 503 limits	420	420	36	2,800	57	

Miscellaneous Potential IO Uses

- Control Se release from coal refuse
 - Donovon and Ziemkiewicz, J Env Quality, 2014
- Lessen Cd, Cu, and Zn in soil
 - Liu et al., Soil and Sediment Contamination, 2014
- Fertilize Fe-deficient soils and ecosystems
 - CO₂ sequestration: Hedin and Hedin, *Mine Water and the Environment*, 2015

Summary

- HE has sustained the sale of iron oxide recovered from mine drainage
- Majority of sales as pigment
- Growth is in use of iron oxide in remediation projects

Questions?

