The complicated role of CO₂ in mine water treatment

Benjamin C Hedin^{1,2} Robert S Hedin¹ ¹Hedin Environmental ²University of Pittsburgh

CO₂ in PA coal mine drainage

Site	Log CO ₂ partial pressure	
Atmosphere	-3.50	
Eastern U.S. groundwater (Appelo & Postma)	-1.60	
Mine Waters		
Marchand	-0.76	
Crabtree	-0.96	
Pine Run	-1.14	
Brinkerton	-1.14	•
Howe Bridge	-1.13	
Morrison	-0.99	8
Wingfield	-0.94	
Phillips	-1.01	
Cravotta, 2008	Median -1.00	
(90 samples w/ alk > 0)	-0.54 to -2.45	рН

CO₂ over time

Presentation topics

- CO₂ and lime treatment
- CO₂ and passive Fe and Mn oxidation
- CO₂ and limestone dissolution

CO2 calculated

- Assume alkalinity is HCO₃⁻
- $H_2CO_3 <-> H^+ + HCO_3^- k_1^{-6.3}$ (temp dependent)
- $CO_{2(g)} + H_2O <-> H_2CO_3 K_{co2} \sim 10^{-1.5}$ (temp dependent)

$H_2CO_3 + CaO \rightarrow CaCO_3 + H_2O$

Lime Treatment Inefficiency due to CO₂

- Nine lime treatment sludges from Pennsylvania
 - 10 92% CaCO₃ equivalency, average 56%
- Clyde lime treatment plant (Pennsylvania)
 - 25% of lime addition \rightarrow calcite formation
 - \$117,000/yr in extra reagent cost

But...

- Hollywood lime treatment plant (Pennsylvania) needed to discharge more alkalinity, so the plant's CO₂ aeration was scaled back
- Schleenbain lime treatment plant (Germany) produces a calcite-containing iron sludge that is valued for its neutralization potential in the mine pit

CO₂ and passive treatment of net alkaline mine waters

- Fe²⁺ and Mn²⁺ oxidation rates are both directly affected by pH
- $HCO_3^- \rightarrow CO_{2(g)} + OH^-$
- Degassing of CO₂ from alkaline water increases pH

CO₂ and alkalinity generation with limestone

$$CO_{2(g)} + H_2O <-> H_2CO_3$$
$$H_2CO_3 + CaCO_3 \rightarrow 2HCO_3^- + Ca^{2+}$$
$$H^+ + CaCO_3 \rightarrow HCO_3^- + Ca^{2+}$$

How important is the CO₂ reaction?

Woodlands treatment system at the Pittsburgh Botanic Garden

Collected from pipe out of abandoned underground mine

Do Alkasts mimic limestone beds? Influence of particle size?

Condition	Alkalinity (mg/l CaCO ₃)	St. Dev.	log pCO ₂
Woodlands Effluent	202	11	
Fresh AMD (>4 hr incubation)	217	21	-1.53
Stale AMD (>4 hr incubation)	124	16	-2.24

Fall Brook north/south Treatment System

North: Boring buried pipe South: ~250 ft channelized flow before in stream collection

Fall Brook

- Fall Brook North = Fresh
- Fall Brook South = Stale
- ALKasts on North/South DLB influent/effluent
- ALKasts on South AMD at source (fresh)
- ALKasts on South AMD at variable flows

	Influent	flow	рΗ	Acid	Fe	Al	Mn	SO4
		gal/min		CaCO ₃	mg/L			
Woodlands	Pipe	8	3.2	143	0.6	16.3	0.8	474
FB North	Pipe	135	3.5	67	2.7	11.5	9.4	213
FB South	Stream	2,070	3.5	66	0.5	9.9	10.1	285
FB South	Stream	666	3.6	59	0.4	9.4	10.2	274

	FBN	FBS	FBS		
System influent water type	Fresh	Stale	Stale		
System theoretical retention, hr	14	15	5		
System effluent, alk	125	78	61		
Retention time = hours. Alk = alkalinity as $mg/l CaCO_3$					

	FBN	FBS	FBS	
System influent water type	Fresh	Stale	Stale	
System theoretical retention, hr	14	15	5	
System effluent, alk	125	78	61	
Alkast, system influent, alk	158	97	76	
Retention time = hours. Alk = alkalinity as $mg/I CaCO_3$				

	FBN	FBS	FBS	
System influent water type	Fresh	Stale	Stale	
System theoretical retention, hr	14	15	5	
System effluent, alk	125	78	61	
Alkast, system influent, alk	158	97	76	
Alkast, system effluent, alk	147	97	89	
Retention time = hours. Alk = alkalinity as mg/l CaCO ₃				

	FBN	FBS	FBS	
System influent water type	Fresh	Stale	Stale	
System theoretical retention, hr	14	15	5	
System effluent, alk	125	78	61	
Alkast, system influent, alk	158	97	76	
Alkast, system effluent, alk	147	97	89	
Alkast, fresh influent, alk		206	162	
Retention time = hours. Alk = alkalinity as $mg/l CaCO_3$				

CO₂ and Limestone Conclusions

What happens when the *fresh* influent is allowed to aerate and become stale before ALKast testing?

	Wood	FBN	FBS	FBS
System influent water type	Fresh	Fresh	Stale	Stale
System theoretical retention, hr	36	14	15	5
System effluent, alkalinity mg/L	202	125	78	61
Alkast, system influent, alkalinity mg/L	217	158	97	76
Alkast, system effluent, alkalinity mg/L		147	97	89
Alkast, fresh influent, alkalinity mg/L	217		206	162
Alkast, stale influent, alkalinity mg/L	124			

Loose ~ 93 mg/l alkalinity if allow water to aerate

What happens if water is collected from the source and kept *fresh* for Alkast testing?

	Wood	FBN	FBS	FBS
System influent water type	Fresh	Fresh	Stale	Stale
System theoretical retention, hr	36	14	15	5
System effluent, alkalinity mg/L	102	125	78	61
Alkast, system influent, alkalinity mg/L	217	158	97	76
Alkast, system effluent, alkalinity mg/L		147	97	89
Alkast, fresh influent, alkalinity mg/L	217		206	162
Alkast, stale influent, alkalinity mg/L	124			

Gain ~ 100 mg/l alkalinity if collected at source

Lower CO₂ with high flow rate

How to handle CO₂ in treatment systems?

- Lime system
 - Degassing CO₂ substantially decreases chemical costs
 - Preserving CO₂ increases effluent alkalinity and makes sludge more alkaline
- Fe²⁺ or Mn²⁺ passive oxidation system
 - Degassing CO₂ increases pH and oxidation rates
- Limestone system
 - Preserving CO₂ substantially increases alkalinity generation
 - Maximize alkalinity generation vs maximize lifespan of bed

Recommendations

- Measure CO₂ or simply assume fresh AMD has high CO₂ content
- Consider the effect of CO₂ on the treatment processes and handle it appropriately

Use ALKasts to experiment with alkalinity generation

