

Advancements in Iron Terrace Design for Metal Mine Sites

Jim Gusek, P.E., Lee Josselyn, and Eric Wolaver Sovereign Consulting Inc. Lakewood, CO

Outline

- Passive Treatment 101 "It's not a constructed wetland"
- Iron Terraces Mother Nature @Work
- Interesting chemical reactions
- Quick case studies
 - Moran Tunnel, Idaho
 - Western USA
 - Elizabeth Mine, Vermont
- What we do and don't know...

Passive Treatment of Mining Influenced Water (MIW) involves the:

- **S**equential
- **E**cological
- eXtraction

Of metals in a man-made but naturalistic bio-system

P.T. Metal Removal Mechanisms

- Sulfide and carbonate precipitation via sulfate reducing bacteria, et al.
- Hydroxide and oxide precipitation by thiobacillus ferro-oxidans bacteria, et al.
- Filtering of suspended materials and precips
- Carbonate dissolution/replacement
- Metal uptake into live roots, stems and leaves
- Adsorption and exchange with plant, soil and other biological materials

Major

Minor

Why Do Terraces Form?

Water flowing on rough inclined planes. A shock-like pattern forms with uniform spacing and constant velocity. Why? Fisher equation?

Iron Terraces – Coast to Coast (USA): Mother Nature at Work

Canterbury Coal Mine, PA

Moran Tunnel Site - November 2013

Cyanobacteria/Algae

More than a century ago, Louis Pasteur said, "Chance favors only the prepared mind."

Fe⁺², Forest Litter & Algae, the Common Denominators

Passive Treatment Chemistry 101

$$SO_{4}^{-2} + 2 CH_{2}O + HS^{+} + 2HCO_{3}^{-} + H^{+}$$
REDUCING/
ANAEROBIC (Sulfate reduction and neutralization by bacteria)
CONDITIONS (Sulfate reduction and neutralization by bacteria)
Zn⁺² + HS⁻ ZnS (s) + H⁺
(Sulfide precipitation)
OXIDIZING Fe⁺³ + 3 H₂O Fe(OH)₃ (s) + 3 H⁺
(Hydroxide precipitation)
CONDITIONS H⁺ + CaCO₃ Ca⁺² + HCO₃⁻
(Limestone dissolution)

Cellulose Dehydration by Acidity

$6H^+ + (C_6H_{10}O_5)n + 3/2 O_2 \implies 6C + 16 H_2O + heat$

Cyanobacteria/Algae Can Raise pH

PHOTOSYNTHESIS IS AN IMPORTANT PROCESS FOR INCREASING pH

$$6 \text{ CO}_2 (g) + 6 \text{ H}_2 O \underset{chlorophyll}{\leftarrow} C_6 \text{H}_{12} O_6 + 6 \text{ O}_2$$

Ref: T. Wildeman, 2005

SOVEREIGN CONSULTING INC

Algae in Portal Biofilm

SOVEREIGN CONSULTING INC.

Three Quick Case Studies

Iron & Al Terrace @ Moran Tunnel, ID

SOVEREIGN CONSULTING INC.

Analysis of Existing Precipitates

Sampling Location		PORTAL		CREEK		BEAVER POND	
Parameter	Units	Value	Moles/ Kg	Value	Moles/ Kg	Value	Moles/ Kg
Sulfate	mg/kg	16,000	0.17	15,000	0.16	160,000	1.67
Total Solids	%	36.7		22.9		27.6	
Aluminum	mg/kg	5,400	0.20	2,400	0.09	4,300	0.16
Calcium	mg/kg	790	0.02	1,500	0.04	58.000	1.45
Copper	mg/kg	300	0.00	280	0.00	1,300	0.02
Iron	mg/kg	140,000	2.51	190,000	3.40	3,100	0.06
Lead	mg/kg	3.3	0.000	5.2	0.000	2.9	0.000
Magnesium	mg/kg	440	0.02	610	0.03	13,000	0.53
Manganese	mg/kg	120	0.002	130	0.002	1,600	0.03

Spec. Gravity Solids 1.7 to 2.3

grams/day/m² Removal Rates in Test Troughs

Constituent	T1	T2	T4	
Constituent	Solids analytical results			
Sulfate (mg/Kg)	30,000	48,000	49,000	
Iron (mg/Kg)	77,000	100,000	100,000	
Aluminum (mg/Kg)	6,100	2,500	3,800	
Mass of solids recovered (Kg)	5.9	12.7	2.8	
Area of media (m ²)		2.8		
Days of testing	56			
	Grams removed per sq meter per day			
Sulfate	1.13	3.89	0.88	
Iron	2.90	8.10	1.79	
Aluminum	0.23	0.20	0.07	

Organic

Non-Organic Oxygenated

Moran Tunnel Fe/Al Terrace Demo (Dec. 2016)

Fe Terrace Pilot (Western USA)

24 weeks of testing Iron Terrace modified week 15 Flow rate increased in week 18 pH 6.1 Alkalinity 200 mg/L as CaCO₃ Fe 35 mg/L

Initial IT Configuration

0.4 grams Fe day/m² At 250 mL/min

- Permeable HDPE wattles used to encourage terrace formation
- Seeded with organic matter
- Seeded with Fe(OH)₂

Modified IT Configuration

SOVEREIGN CONSULTING INC.

Modified IT Configuration

Eddy-currents, mini-whirlpools

Biofilm

0.8 grams/day/m² At 250 mL/min

3.6 grams/day/m² At 1,050 mL/min

Volunteer Fe Terrace (Elizabeth Mine, VT)

SOVEREIGN CONSULTING INC.

Primary Removal Mechanism Evidence

Leaf litter

Biofilm on water surface

Primary Removal Mechanism Evidence

Channel receiving

HD-02 M

Leaf litter

SOVEREIGN CONSULTING INC.

Informal Sampling Event 5.24.16

Flow 15 gpm/57L/min pH varies 3.2 to 7.1 Google Earth

6.0 is "typical"

Filtered samples; analyzed by Colorado School of Mines

	TP-1.7	TP-1.6	TP-1.5	TP-1.4	TP-1.3	TP-1.2	TP-1.1
	Manifold	V-Notch Weir	"White Rock"	Culvert Inlet	Culvert Outlet	Mid-Way	Confluence Copperas Brook
Iron	265	206	72	53	57	38	23
Sulfate	3,300	3,200	2,560	2,530	2,520	2,130	1,640
Fe gdm	5.7		2.	2			
Comments	Consistent w/historical data	Groundwa and contrib other s	ter dilution utions from ources	No change	e in culvert	GW dilut mineral	ion or sulfate deposition?

Fe varies from 2.4 to 950 mg/L from 14 horizontal drains

Pilot Design Concept

Iron Terrace Design Variables (2017) 1 of 4

Parameter	Comment/Significance
Loading (grams Fe/day/m ²) wetted surface	 Primary design (range from 0.5 to 5?) as per W. Burgos (2008) But may be <i>higher</i> as iron removal is a first order kinetic reaction.
Flow velocity	 The faster the better – this may correlate with bed slope (steeper slopes provide faster velocities) "Movement" in stream or pond facilitates iron oxyhydroxide precipitation (Devin Sapsford, ICARD 2015 paper)
Ferrous iron	 This will consume H⁺ when oxidized to ferric (pre-iron hydrolysis reaction)

Iron Terrace Design Variables (2017) 2 of 4

Parameter	Comment/Significance
рН	• The lower the better for organic matter dehydration.
Acidity	 The higher the better (organic matter dehydration kinetics are faster)
ORP	 Must be positive for ferrous to oxidize to ferric
Dissolved oxygen	 Must be 5 ppm or better?
	 6% to 10% Optimum?
Slope of the	Steeper may provide faster velocities
wetted surface	(better oxygenation and Fe precipitation kinetics?) Eddies???

Iron Terrace Design Variables (2017) 3 of 4

Parameter	Comment/Significance
Presence/absence of algae	• Algae provide polysaccharides for carbon source via photosynthesis & bicarbonate ion for neutralization
Presence/absence of sunshine	 If no sun, ferrous to ferric reaction becomes more important – see pipes at Elizabeth Mine TP-1
Presence/absence of organic matter	 If algae are not present, leaf & forest litter become important source of organic matter; must have healthy tree or shrub canopy nearby. This could cut off sunshine during growing season but let in sunshine during the winter. Organic matter may be <i>counterproductive</i> for MIW with low acidity as it will lower the ORP and ferrous iron may form.

Iron Terrace Design Variables (2017) 4 of 4

Parameter	Comment/Significance
Presence/absence of aluminum	 Al(OH)₃ precipitation will compete with iron precipitation in consuming hydrogen ions from organic dehydration or ferrous to ferric reactions. Al drops out last (Moran tunnel)
Presence/absence of mid-terrace "pooling"	 Semi-stagnant conditions in pools, coupled with organic matter from nearby vegetation, could be counter-productive with regard to iron removal. If no organic matter influx, pooling is probably OK.
Presence of	At startup, having some yellowboy present
Fe(OH) ₃	is recommended as a "seed".

Summary

- Mother Nature has been employing terraces for millennia to remove iron, and calcium carbonate (Yellowstone)
- We probably don't know more than we do know – "It's complicated"
- Site-specific bench & pilot tests will be even more important for scale up designs
- A comprehensive "model" for iron terraces may never be feasible but that shouldn't prevent us from using the process

Thank You

In Water Treatment, if you're not part of the **solution**, you're part of the **precipitate.**

jgusek@sovcon.com

