Assessing How Hydrologic Isolation of Coal Mine Spoils Affects Streamflow Mechanisms and Water Chemistry Using Open Source Wireless Technology

Stephanie Fulton and John Dowd University of Georgia 2017 Joint Conference ASMR – WVMDTF – ARRI April 13, 2017

The Problem

- Elevated ionic strength (measured as specific conductance (SC))
 - Reference streams: **30-260 µS/cm**
 - Below SCM/VF sites: 159-2720 μS/cm

Bryant et al. 2000

The Problem

- VFs linked to high conductivity
 - Ionic signature: Ca²⁺, Mg²⁺, SO₄²⁻, HCO₃⁻
- Long-term and cumulative
- No practicable source control technologies
- Research gaps
 - Mine spoil hydrology
 - Solute production and transport

Towards a Solution

R. Warner, unpublished data

Hydrologic Isolation Method

• A priori identification of (non-) reactive spoil

Hydrologic Isolation Method

6

Eastern Kentucky Experimental Valley Fill Site Data Collection

Research Hypothesis

Hydrologic flowpaths can be discriminated by the chemical composition of the leachate

Figure from Griffith et al. (2013)

Dynamic End Member Mixing Analysis

Figure 8. Chloride versus silica concentrations for end-members identified at PMRW.

Conceptual Model (Evans et al 2015)

Dynamic End Member Mixing Analysis

Eastern Kentucky Experimental Valley Fill Site Data Collection

					Feet
0	275	550	1,100	1,650	2,200

SierraNet Alpha Site

Wireless Sensor Networks

Choose Sensor Reading:

http://glaser.berkeley.edu/wsn/network.html

□ Voltage(V) □ Temperature1(°C) □ Temperature2(°C) □ Relative Humidity(%) 🗷 Snow Depth(m)

14

WSN Components

ZigBee/802.15.4 Mesh network and device types. Figure 5

http://freaklabs.org/index.php/tutorials/hardware/ weatherproof-wireless-enclosure-buildtutorial.html

Secure Enclosure

Datalogger/Sensor(s)

Rainfall

Hydrology and Water Quality Data (6 to 9 mos.)

Surface runoff

Graundwater

- 2) **Groundwater/SLSSF** a) Phase I
 - Water Level
 - **Conductivity** ii.
 - iii. Temp
 - b) Phase II
 - ORP
 - ii. pH

- 1) Surface Water
 - a) Phase I
 - Water Level
 - Conductivity ii.
 - iii. Temperature
 - b) Phase II (exc. ppt.)
 - ORP i.
 - ii. DO
 - iii. pH
 - iv. Ca²⁺
 - **v.** Cl⁻
- Monthly WQ sampling 3)
 - a) Major anions
 - **Major cations** b)
 - Trace metals C)
 - **d**) pН
 - e) Alkalinity
 - **f**) Acidity

treamilo

Temp/DO/Cond. **g**)

Shallow lateral subsurface flow (SLSSF)

Base Station

Concrete-mounted, locking storage box; pedestal for PVC pole; signage and camouflage paint. Station will include Arduino Mega, cellular modem (GSM 2G), XBee PRO 900 MHz RF module, solar panel, 12V battery, and electrical monitoring system (and possibly future surveillance system).

View uphill to Monitoring Well Station

Arduino Mega

Well secured inside locked, concrete-mounted steel storage box

n

Monitoring Well/Weather Station

With the Res

Weather station data logger will be pole mounted, co-located with well, and grounded Groundwater sensor data will be relayed from groundwater table to top of well using Xbee PRO RF modules

Climate Data

- Precipitation
- Wind speed
- Barometric pressure
- Air temperature
- Relative humidity

Well Points

November 2015

November 4, 2016

November 3, 2016 -

Sediment Pond

Lower Flume

WARNING

Kentucky

Currently: Decagon CTD-10 sensor and EM50R data logger Watershed UGA Birdsong Site

Watershed UGA Birdsong Creek Demonstration Site

Rain Gage + XBee RF Module

Pilot Conductivity Sampling Chamber

Watershed UGA - Birdsong Creek Live Datastream

Watershed UGA - Birdsong Creek Live Datastream

In Conclusion

- High resolution, continuous flow and conductivity data collected via WSN will help to:
 - Identify the important flow paths of high conductivity source waters contributing to elevated ionic strength in streams below VFs.
 - Apportion the dynamic contribution of each source to increased total dissolved solids loads throughout a storm event.
 - Increase our understanding of the impact of the hydrologic isolation technique on stream flow mechanisms.
- Study results will help inform the further refinement of spoil management and placement techniques for the construction of valley fill designed to minimize TDS-production.

Acknowledgements

- Funding: Electric Power Research Institute (EPRI)
- Dr. Aaron Thompson, Crop and Soil Sciences, UGA
- Dr. John Dowd, Geology, UGA
- Dr. Chris Barton, UK
- Jack Fulton and Maren Fulton

Questions?