Nickel and Zinc Sorption and Desorption by a Mixed Algae Community Collected From a Mine Drainage Passive Treatment System

Ellen Fielding Robert W. Nairn

April 2017

Center for Restoration of Ecosystems and Watersheds University of Oklahoma

Overview

- 1. Introduction
- 2. Literature Review
- 3. Hypotheses & Objectives
- 4. Experimental Setup
- 5. Results
- 6. Conclusions

Introduction

Tri-State Mining District

- > Lead zinc mines
- > Abandoned in 1970
- Resulted in upwellings
- Mayer Ranch
 Passive Treatment
 System (MRPTS)

U.S. Fish and Wildlife Services

Introduction

Mayer Ranch Passive Treatment System

Introduction

 Trace amounts of Ni and Zn are detectable at the effluent
 Toxins in high concentrations
 Natural algae consortium may play a role in metal uptake and release

Literature Review

- Metal uptake by algae is possible
 - > Adsorption is the main removal mechanism
- Environmental factors and other conditions influence sorption
 - > Algae & metal species
 - > Age of material
 - > pH
 - > Growth rate
- Metal preferences by algae species

- > Algae concentration
- > Contact time
- Presence of charged functional groups

Literature Review

- Algae with previous metals exposure
 - > Less inhibited growth
- Release of metals during decomposition theorized
 - > Very few studies quantify desorption

Hypotheses

1. Algae from MRPTS will be able to uptake Ni and Zn

- 2. The concentration of sorbed metals will decrease during decomposition
- 3. Some Ni and Zn will stay sorbed to algae detritus despite decomposition

Hypotheses

 Algae from MRPTS will be able to uptake Ni and Zn

- 2. The concentration of sorbed metals will decrease during decomposition
- 3. Some Ni and Zn will stay sorbed to algae detritus despite decomposition

Hypotheses

1. Algae from MRPTS will be able to uptake Ni and Zn

- 2. The concentration of sorbed metals will decrease during decomposition
- 3. Some Ni and Zn will stay sorbed to algae detritus despite decomposition

- 1. Determine initial concentrations of Ni and Zn in MRPTS algae and water
- 2. Measure the uptake of Ni and Zn by algae during the growth phase
- 3. Determine if conditions promoting algae death affect [Ni] or [Zn]
- 4. Measure Ni and Zn masses gained or released during decomposition

- 1. Determine initial concentrations of Ni and Zn in MRPTS algae and water
- 2. Measure the uptake of Ni and Zn by algae during the growth phase
- 3. Determine if conditions promoting algae death affect [Ni] or [Zn]
- 4. Measure Ni and Zn masses gained or released during decomposition

- 1. Determine initial concentrations of Ni and Zn in MRPTS algae and water
- 2. Measure the uptake of Ni and Zn by algae during the growth phase
- 3. Determine if conditions promoting algae death affect [Ni] or [Zn]
- 4. Measure Ni and Zn masses gained or released during decomposition

- 1. Determine initial concentrations of Ni and Zn in MRPTS algae and water
- 2. Measure the uptake of Ni and Zn by algae during the growth phase
- 3. Determine if conditions promoting algae death affect [Ni] or [Zn]
- 4. Measure Ni and Zn masses gained or released during decomposition

Sample Collection

Algae Present

Pennate Diatoms

Oedegonium

- Measure Ni and Zn in initial algae and water samples
- Five [Ni and Zn] in triplicate
 - > 0.5, 2.0, 5.0, 10.0, and 20, mg/L
- Cell 6 water as blank samples
- No algae control sample (10 mg/L Ni and Zn solution)
- Destructive sampling (i.e., deplete samples for analysis)

• Growth Phase (5 days):

- Provide photosynthetically active radiation (PAR) lights
- > 20°C

• Chilled Phase (2 days):

- > Promote death of algae
 - Eliminate light
 - 0°C

• Decomposition Phase (21 days):

- > Remain covered to prevent light
- > 20°C

Initial Samples

Initial Samples

	Nickel	Ni Std. Dev.	Zinc	Zn Std. Dev.
MRPTS Cell 6 Water (mg/L)	0.05	+/- 0.0006	0.01	+/- 0.0001
MRPTS Cell 6 Algae (mg/Kg)	210	+/- 11	1213	+/- 161

Results – Data

Growth Phase

20°C w/ light cycles

Growth Phase – Nickel

Solution 🛛 🗧 Algae

Growth Phase – Zinc

Chilled Phase

0°C w/o light

Chilled Phase – Nickel

Solution 📄 Algae

Chilled Phase – Zinc

Decomposition Phase

20°C w/o light

Decomposition Phase – Nickel

Solution 📄 Algae

Decomposition Phase – Zinc

Solution 👘 Algae

Results – Overall

*Includes previous phase/s

Chilled Phase – Nickel

Solution 📄 Algae

Chilled Phase – Zinc

Solution 🛛 Algae

Decomposition Phase – Nickel

Solution 📄 Algae

Decomposition Phase - Zinc

Solution Algae

Algae – Nickel ---20 (mg/L) ---10 (mg/L) ---5 (mg/L) ---2 (mg/L) ---0.5 (mg/L) ---Cell 6 Water Ni (mg) Day

---20 (mg/L) ---10 (mg/L) ---5 (mg/L) ---2 (mg/L) ---0.5 (mg/L) ---Cell 6 Water

---20 (mg/L) ---10 (mg/L) ---5 (mg/L) ---2 (mg/L) ---0.5 (mg/L) ---Cell 6 Water

---20 (mg/L) ---10 (mg/L) ---5 (mg/L) ---2 (mg/L) ---0.5 (mg/L) ---Cell 6 Water

---20 (mg/L) ---10 (mg/L) ---5 (mg/L) ---2 (mg/L) ---0.5 (mg/L) ---Cell 6 Water

Conclusions

- Sorption occurred during growth and decomposition
- Desorption back into solution occurred during chilled phase
- Overall
 - > Sorption and <u>retention</u> of Ni & Zn by algae
- Greater sorption with greater [Ni] and [Zn]

1. Algae from MRPTS will be able to uptake Ni and Zn

1. Algae from MRPTS will be able to uptake Ni and Zn

Confirmed

- 1. Algae from MRPTS will be able to uptake Ni and Zn
 - Confirmed
- 2. The concentration of sorbed metals will decrease during decomposition

- 1. Algae from MRPTS will be able to uptake Ni and Zn
 - Confirmed
- 2. The concentration of sorbed metals will decrease during decomposition
 > Rejected

- 1. Algae from MRPTS will be able to uptake Ni and Zn
 - Confirmed
- 2. The concentration of sorbed metals will decrease during decomposition

Rejected

3. Some Ni and Zn will stay sorbed to algae detritus despite decomposition

- 1. Algae from MRPTS will be able to uptake Ni and Zn
 - Confirmed
- 2. The concentration of sorbed metals will decrease during decomposition
 - Rejected
- 3. Some Ni and Zn will stay sorbed to algae detritus despite decomposition
 - Confirmed

Conclusions

- Naturally growing algae at MRPTS is capable of sorbing Ni and Zn
 - > Likely providing additional treatment
- Sorption was exhibited by living <u>and</u> decomposed algae
 - > Algae will continue to provide treatment
 - » More algae present means more treatment

Future Research

- Peak Sorption
- Effects of seasonality
- Quantifying yearly uptake
 - > Treatment \$ saved
 - Cost benefit of supporting algae for treatment in a passive treatment system

Acknowledgements

- Grand River Dam Authority (GRDA)
 - Rich Zamor
- ≽ Steve Nikolai

- Center for Restoration of Ecosystems and Watersheds (CREW)
 - Nick Shepherd
 - Zepei (Maggie) Tang
 - Amy Sikora

Grand River Dam Authority

- Derrick Nguyen
- Bryan Page
- Kandace Steele

Ecosystems and Watersheds University of Oklahoma

Thank You! Any Questions?

