

Metals Got You Down? A Look at Effective Mining-Influenced Water Treatments

ONE COMPANY, ENDLESS SOLUTIONS

Pamela J. Dugan, Ph.D., P.G., Carus Corporation

Today's Talking Points

- About Us
- Mn Treatment Challenges
- Product Development
 Permanganate Tablets and Alkaline Permanganate
- Field Trials: PA and KY
- Reactive Capping for Remediation, Reclamation and Slope Stabilization
- New Developments:
 - ≻As, Se, Hg and B Treatments

About Us

• Privately Held; Founded in 1915

> About 400 Employees

- Five Manufacturing Sites in the United States
 Warehouses in Europe
- International Sales and Distribution Organization
- Key Markets:

> Water Treatment, Air Purification and Remediation

Mn Treatment Challenges

- 1. Effluent geochemistry (e.g., pH and Eh) are unfavorable for Mn precipitation
- 2. Complex effluent chemistries and competing ions
- Chemical-neutralizing reagents to precipitate manganese are problematic
 - High pH increases costs due to chemical consumption (nuisance reactions) leads to untreated water
 - Traditional processes generate large amounts of sludge
- Permanganates are very effective for Mn (and Fe) removal

Permanganates for *Rapid* Removal of Mn and Fe

- Widely used in drinking water, wastewater, and remediation (inorganics and organics)
 - Oxidizes Fe and Mn to convert ferrous (2+) iron into the ferric (3+) state and manganese (2+) to the 4+ state
- Permanganate dose $3Fe^{2+} + KMnO_4 + 7H_2O \rightarrow 3Fe(OH)_{3(s)} + MnO_{2(s)} + K^+ + 5H^+$
 - 0.94 mg/mg iron
 - 1.92 mg/mg manganese $3Mn^{2+} + 2KMnO_4 + 2H_2O \rightarrow 5MnO_{2(s)} + 2K^+ + 4H^+$
 - CARUSOL®

Liquid sodium permanganate NaMnO₄ (20% and 40%)

• CAIROX[®]

Solid potassium permanganate KMnO₄(solubility)

~3%)

Permanganates for *Rapid* Removal of Mn and Fe

Permanganate-Based MIW Product Development

- CAIROX[®] CR Permanganate Tablets (80% KMnO₄ with inert binder)
 - Slow-release permanganate for many days to weeks (depends on flow rate)
 - Passive treatment for Mn/Fe removal
 - Excellent for remote locations
- Alkaline CARUSOL[®] (liquid NaMnO₄):
 Stable permanganate/caustic blend for Mn/Fe removal and pH adjustment
- Spreadsheet calculators assist with dosing

Initial Field Trials: Permanganate Tablet Deployment

Lessons Learned: Tablet Dispenser for Field Trials (PA)

Prototype Tablet Dispenser

Penn Coal Tablet Trial

- Lower flow pond 5 30 GPM
- Bio-bed pretreatment
- 6 13 ppm Mn, pH 6-7

Prototype Tablet Dispenser Learnings

- Weir plates and tablet holders are adjustable based on flow
- Adjustable Design allows Passive Treatment of Variable Flows (Up to 50 GPM)

PA Permanganate Tablet Trial

Month-Long Final Discharge Mn Concentration < 2 mg/L

Tablet Trial Highlights

- Final Mn discharge compliance achieved at PA sites (<2 mg/L)
- Dispenser compensates for variable flow
- Effective for treating Mn in the presence of Al

Alkaline CARUSOL: KY Field Trial

- Remote pond with acidic waste stream Fe and Mn above discharge limits
- Sodium permanganate & caustic were being applied separately
- Alkaline CARUSOL: Customblended product to adjust pH + treat metals
- Bench-scale jar tests determine baseline geochemistry to develop appropriate blend
- Average pH = 4.7
 ➢ Fe = 2.3 mg/L
 ➢ Mn = 21 mg/L
- Flow 40-80 GPM

Alkaline CARUSOL: Tote Deployment

	Mn/Fe	Mn/Fe	
Pre- and Post-Treatment	Concentrations	Removal	
(December 2014)	(mg/L)	(%)	
Fe Pre-Treatment	11		
Fe Post-Treatment	1 7	86%	
~15 min reaction	1.7		
Mn Pre-Treatment	22		
Mn Post-Treatment ~15	0.04	97%	
min reaction	0.04		

CARUS®

Alkaline CARUSOL: KY Field Trial

Outfall Sampling	Outfall Fe (ppm)	Outfall Mn (ppm)	Outfall pH
Pre-Alkaline Carusol tote September 2014	0.744	1.12	7.1
Post-Alkaline Carusol tote December 2014	0.134	0.818	7.3
Post-Alkaline Carusol tote January 2015	0.137	0.28	7.1

PennzSuppress[™] Reactive Capping Overview

- I-99 road construction through Central PA resulted in exposure of pyritic material
- Acid Rock Drainage by pyrite weathering required remediation
- Reactive barrier prevents wash-off of neutralizer
- Mulch and seed applied with hydroseeder creating a reactive barrier for revegetation and slope stabilization
- Neutral pH, healthy revegetation, and slope stabilization remains 10+ years after emplacement

Reactive Capping: Remediation, Reclamation and Slope Stabilization

Reactive Capping: Remediation, Reclamation and Slope Stabilization

New Developments: Treatment Approaches for As, Se, Hg and B

- Oxidation/Reduction
- Adsorption
- Co-precipitation

Source: Zhang et al., (2014). Respective Role of Fe and Mn Oxide Content for Arsenic Sorption in Fe and Mn Binary Oxide: An X-Ray Adsorption Spectroscopy Investigation Environ Sci Technol. 2014 Sep 2;48(17):10316-22

Source: Szlachta and Chubar. (2013). The application of Fe–Mn hydrous oxides based adsorbent for removing selenium species from water. Chem. Eng, Jour.

Source: Kameda et a., (2016). Use of MgAl oxide for boron removal from an aqueous solution in rotation: Kinetics and equilibrium studies J. Env. Mgmt., 165, 280-285

Sorbent Experimental Approach

Properties of Carus Mn-Based Adsorbents

Micro Amorphous Manganese Oxide (AMO)

- Higher IEC than naturally occurring MnOx
- Powder, Granular, or Coating
- Mixed Metal Oxide (MMO)
- Cation and anion exchange functionality
- Powder, Granular, or Coating

- Mean Particle Size ~ 10 micron
- Surface Area ~ 300 m²/g

Arsenic Removal

Adsorbent Loading		
(mg As/g Adsorbent)		
As (III)	As (V)	
MMO-1, 1.6	MMO-1, 1.6	
MMO-2, 1.6	MMO-2, 1.6	
Metsorb, 0.9	GFH, 1.6	
Bayoxide, 0.8	Bayoxide, 1.5	
Iron Adsorbent, 0.7	Metsorb, 0.9	
GFH, 0.7	Iron Adsorbent, 0.5	
PAC, 0.7	PAC, 0.1	

Arsenite: 100% Carus MMO Arsenate: 97% Carus MMO

Selenium Removal

Adsorbent Loading		
(mg Se/g Adsorbent)		
Se (VI)	Se (IV)	
Iron Adsorbent, 1.0	MMO-2, 0.92	
GFH, 0.94	MMO-1, 0.91	
Bayoxide, 0.65	Bayoxide, 0.91	
PAC, 0.62	GFH, 0.88	
MMO-1, 0.43	Iron Adsorbent, 0.70	
MMO-2, 0.43	Metsorb, 0.69	
Metsorb, 0.19	PAC, 0.37	

Selenite: 100% Carus MMO Selenate: 40% Carus MMO (product optimization in progress)

Mercury and Boron Removal

Results: As Removal in Packed Bed Reactor

- 40-50 ppb As Influent
- As Breakthrough after ~ 20,000
 Bed Volumes

Take Home Message

- Slow release tablet or liquid
- Solid product good for remote sites, lower flows
- Liquid product good for all flows
- Effective for Mn and Fe in the presence of Al
- MnO₂ settles quickly/serves as adsorbent for other metals
- Reactive caps remediate <u>and</u> reclaim mining waste piles
- Carus sorbents very effective for As, Se, Hg & B

Thanks! Questions?

- PADEP and OSM
- Penn Coal

Pamela J Dugan, Ph.D., P.G. pamela.dugan@caruscorporation.com Office: 815-224-6870