GEOCHEMICAL KINETICS MODULES FOR "AMDTreat 5.0+"

Charles A. Cravotta III U.S. Geological Survey

In collaboration with Brent P. Means U.S. Office of Surface Mining Reclamation and Enforcement

USGS

Objective

- Incorporate PHREEQC "kinetics tools" to AMDTreat 5.0+
 - FeII oxidation tool that utilizes established rate equations for gas exchange and pH-dependent iron oxidation and that can be associated with commonly used aeration devices; and
 - Limestone dissolution tool that utilizes established rate equation for calcite dissolution and that can be adjusted for surface area of commonly used aggregate particle sizes.

Estimated CO₂ Outgassing & O₂ Ingassing Rate Constants for Various Treatment Technologies

	Temper-	C	O2 Outgas			O ₂ Ingas		
Site	ature	k _{L.CO2} a			k _{L,O2} a			
	(°C)	(s ⁻¹)	log(s ⁻¹)	log(min ⁻¹)	(s ⁻¹)	log(s ⁻¹)	log(min ⁻¹)	
Treatment Systems								
Maelstrom (Sykesville, Trent, St.Michaels)	20	0.03	-1.52	0.26	0.06	-1.22	0.56	
Surface Aerator (Renton, Rushton)	20	0.001	-3.00	-1.22	0.002	-2.70	-0.92	
Mechanical Aerator (Lancashire)	20	0.0006	-3.22	-1.44	0.0012	-2.92	-1.14	
Aeration Cascade/Level Spreader (Silver Cr)	20	0.01	-2.00	-0.22	0.02	-1.70	0.08	
Rip-rap Spillway/Ditch (Silver Cr, Pine Forest,	20	0.005	-2.30	-0.52	0.01	-2.00	-0.22	
Pond (Silver Cr, Pine Forest, Lion Mining, Flight93)	20	0.00001	-5.00	-3.22	0.00002	-4.70	-2.92	
Wetland (Silver Cr, Pine Forest, Lion Mining)	20	0.00001	-5.00	-3.22	0.00002	-4.70	-2.92	
Oak Hill Aeration Expts.								
Aer3	20	0.0005625	-3.25	-1.47	0.001125	-2.95	-1.17	
Aer2	20	0.0002475	-3.61	-1.83	0.000495	-3.31	-1.53	
Aer1	20	0.0001508	-3.82	-2.04	0.000302	-3.52	-1.74	
AerO	20	0.0000169	-4.77	-2.99	3.38E-05	-4.47	-2.69	

kL,a_20 = kL,a_TC /(1.0241^(TC-20)). kL,a_TC = kL,a_20 * (1.0241^(TC-20)).

kL,a_20 = $(LN((C_1-C_5)/(C_2-C_5))/t) / (1.0241^{(TEMPC - 20)})$, where C is CO₂ or O₂. Dissolved O₂, temperature, and pH were measured using submersible electrodes. Dissolved CO₂ was computed from alkalinity, pH, and temperature data.

New Iron Oxidation Rate Model for "AMDTreat" (combines abiotic and microbial oxidation kinetics)

The **homogeneous oxidation rate law** (Stumm and Lee, 1961; Stumm and Morgan, 1996), expressed in terms of $[O_2]$ and {H⁺} (=10^{-pH}), describes the abiotic oxidation of dissolved Fe(II):

$-d[Fe(II)]/dt = k_1 \cdot [Fe(II)] \cdot [O_2] \cdot \{H^+\}^{-2}$

The **heterogeneous oxidation rate law** describes the catalytic abiotic oxidation of sorbed Fe(II) on Fe(III) oxyhydroxide surfaces at pH > 5, where (Fe(III)) is the Fe(III) oxyhydroxide concentration expressed as Fe in mg/L (Dempsey et al., 2001; Dietz and Dempsey, 2002):

$-d[Fe(II)]/dt = k_2 (Fe(III)) \cdot [Fe(II)] \cdot [O_2] \cdot \{H^+\}^{-1}$

The **microbial oxidation rate law** describes the catalytic biological oxidation of Fe(II) by acidophilic microbes at pH < 5 (Pesic et al., 1989; Kirby et al., 1999):

$-d[Fe(II)]/dt = k_{bio} \cdot C_{bact} \cdot [Fe(II)] \cdot [O_2] \cdot \{H^+\}$

where k_{bio} is the rate constant in L³/mg/mol²/s, C_{bact} is the concentration of iron-oxidizing bacteria in mg/L (dry weight), [] indicates aqueous concentration in mol/L.

New Iron Oxidation Rate Model for "AMDTreat"— PHREEQC Coupled Kinetic Models of CO₂ Outgassing & Fe(II) Oxidation

HowGPM 100 Fe 19.7 ✓ Estimate Fe2 Fe2 19.7	Duration of aeration (tim TimeSecs : 28800	te for reaction) is 8 hrs	Kinetic v including ingassin microbia	ariables g CO ₂ o g rates I Fell o	s can be adjusted, utgassing and O ₂ plus abiotic and xidation rates.
Mn 3.6 pH 6.4 Alk 150 IV Estimate TIC TIC 0 SO4 400 CI 7.9 Ca 79 Ca 79 Ca 5.0 TempC 15.1 SCuS/cm 1280 DO 0.1	KLaCO2 0.0006 factr kCO2 1 factr kCO2 1 factr kCO2 2 factr kCP2 2 factr kCP2 0 bactMPN 5.30E+11 StcPPT 0.3 H202mmol 0 factr kh2o2 1 FallRecirculated Fell Option to specify Fell re Generate Kinetice Output t Dis. Metals Plot Ca. Acidity	2000 CO ₂ outgassing rate in sec ⁻¹ Adjustment CO ₂ outgassing Adjustment O ₂ ingassing rat Adjustment ab otic homoge Adjustment ab otic heterog iron oxidizing bacteria, micr Calcite saturation limit Hydrogen peroxide added* Adjustment to H2O2 rate 2000 circulation Plot Sat Index	rate te (x kLaCO2) neous rate obial rate Addition FeIII sim correcte Fe and p pH. Corr	of H ₂ O ulated. d. Optico bH plus	Aer3: $k_{L,CO2}a = 0.00056 \text{ s}^{-1}$ Aer2: $k_{L,CO2}a = 0.00022 \text{ s}^{-1}$ Aer1: $k_{L,CO2}a = 0.00011 \text{ s}^{-1}$ Aer0: $k_{L,CO2}a = 0.00001 \text{ s}^{-1}$ and recirculation of Constants temperature ons to estimate Fe2 from TIC from alkalinity and net acidity, TDS, SC,

Limestone Dissolution Rate Model for AMDTreat (generalized expression corrects for surface area)

Appelo and Postma (2005) give a generalized rate expression for calcite dissolution that considers physical characteristics of the system as well as solution chemistry:

 $\mathbf{R} = k \cdot (A/V) \cdot (1 - \Omega)^n$

where A is calcite surface area, V is volume of solution, Ω is saturation state (IAP/K = 10^{Slcc}), and *k* and n are empirical coefficients that are obtained by fitting observed rates.

For the "PWP" model applied to 1 liter solution, the overall rate becomes:

 $\mathbf{R} = (k_1 \bullet a_{H^+} + k_2 \bullet a_{H^2CO3^+} + k_3 \bullet a_{H^2O}) \bullet (A) \bullet (1 - 10^{(n \bullet Slcc)})$

Plummer and others (1978) reported the forward rate constants as a function of temperature (T, in K), in millimoles calcite per centimeter squared per second (mmol/cm²/s):

log $k_1 = 0.198 - 444 / T$ log $k_2 = 2.84 - 2177 / T$ log $k_3 = -5.86 - 317 / T$ for T ≤ 298 ; log $k_3 = -1.10 - 1737 / T$ for T > 298

Gradation	Number	Weight (g)	Pa	rticle Dime	nsions (c	m)	Particle S	urface Ar	ea (cm^2)	Unit Sur	face Area	(cm^2/g)
AASHTO	PA	Average Particle	Long Axis	Inter- mediate	Short Axis	Average Axis	Rectan- gular Prism	Sphere	Ellipsoid	Rectan- gular Prism	Sphere	Ellipsoid
R-5		22160.145	45.72	22.86	13.34	27.31	3919.35	2342.26	2862.08	0.18	0.11	0.13
R-4		7113.133	30.48	16.51	8.89	18.63	1841.93	1089.98	1319.11	0.26	0.15	0.19
R-3		1185.522	16.51	8.89	5.08	10.16	551.61	324.29	395.61	0.47	0.27	0.33
1	4	341.978	8.89	6.35	3.81	6.35	229.03	126.68	155.24	0.67	0.37	0.45
3	3A	78.166	5.08	3.81	2.54	3.81	83.87	45.60	56.39	1.07	0.58	0.72
5		9.771	2.54	1.91	1.27	1.91	20.97	11.40	14.10	2.15	1.17	1.44
57	2B	3.257	2.54	1.27	0.635	1.48	11.29	6.90	8.25	3.47	2.12	2.53
	2NS	9.771	2.54	1.91	1.27	1.91	20.97	11.40	14.10	2.15	1.17	1.44
67	2	1.832	1.91	0.95	0.635	1.16	7.26	4.26	5.28	3.96	2.32	2.88
	1NS	1.221	1.27	0.95	0.635	0.95	5.24	2.85	3.52	4.29	2.33	2.89
7		1.221	1.27	0.95	0.635	0.95	5.24	2.85	3.52	4.29	2.33	2.89
0	1B	0.362	0.95	0.79	0.3175	0.69	2.02	1.49	1.70	6.87	3.90	4.44
000, Erosic lanagemen imer, Wig for empir egate. <i>Mu</i> surface area	in and sedi it, Docume ley, and P ical testin <i>Itiply cm²</i> , a computed	ment pollution co nt No. 363-2134- arkhurst (1978) g and developm /g by 100 g/mo for various geor	reported nent of PV <i>I to get su</i>	ram manual b. (tables 9 a l unit surfa WP rate mo urface area Is:	Harrisbur and 10A). ce area (S odel. The <i>a</i> (A) units	GA) of 44.5 ese SA val	and 96.5 ues are 10 ol used in	Environm cm ² /g for 0 times la AMDTree	ental Protect "coarse" a orger than at rate mod	and "fine" those for del.	u of Water particles, typical lin	shed , respectiv nestone
Sphere: 4 Rectangul Ellipsoid: (olume com Sphere: 4/	or (Average ar Prism: 2 pi*D^2)/S, puted for s 3*pi*(Avera	of Axes/2)^2 *(Long Axis*Shot where ame geometric for age Axis/2)^3	rt Axis)+2* D=2*(vol/(4 prms:	(Long Axis* 4/3pi))^(1/3)	Intermedia	te Axis)+2 S=1.15-0.3	(Short Axis 25E	*Intermedi	ate Axis) E=Long Ax	cis/D		

New Module For AMDTreat — PHREEQC Kinetic Model of Limestone Dissolution

		TimeSe	cs :	72000 is 20 hrs
FlowGP	M 100	UmestoneDiss	TimeSe	cs 72000
Fe	19.7	SAcc	0.45e+02	Surface area , cm ²
🕅 Estir	nate Fe2	EXPcc	0.67	Equilibrium approa
Fe2	19.7	M/M0cc	1.00	Mass available
A	0.047			
Mn	3.6	**Multiply s	urface are	a (SA) in cm ² /g
pH	5.8	by 100 to ge	t SAcc in c	:m²/mol.
Alk	37			
Estir	nate TIC			
TIC	39.8			
SO4	400			
a	7.9			
Ca	79			
Mg	64			
Na	5.0			
TempC	15.1			
SC.uS/	cm 820			
DO	0.1	Generate Kine	tics Output	
			A - In	

Calcite dissolution rate model of Plummer, Wigley, and Parkhurst (PWP; 1978). Empirical testing and development of PWP rate model based on "coarse" and "fine" calcite particles with surface areas of 44.5 and 96.5 cm²/g, respectively.

Surface area and exponential corrections permit application to larger particle sizes (0.45 to 1.44 cm²/g) used in treatment systems.

New Module For AMDTreat — PHREEQC Coupled Kinetic Models of Limestone Dissolution & Fe(II) Oxidation

FlowGl	069 M	Imartona Dire	Time Ser	14240		outoassi	n_{α} and Ω_{α} increasing and Eq
Fe	14.0	SAccDIS	0.72e+02	Surface area		outgussi	
Est	mate Fe2	EXPccDIS	0.67	Equilibrium app	roach	oxidation	are combined to evaluate
Fe2	14.0	M/M0cc	1.00	Mass available		possible	reactions in passive treatme
A	0.09	FellOxidation	TimeSec	⇒ 47015		avotomo	
Mn	3.1	🔽 Use Lin	nestoneDiss B	Effluent		systems.	
pH	5.79	kLaCO2	0.00005	CO ₂ outgassing	rate		
Alk	26	factr.kC02	1	Adjustment CO2	outgassing r	ate	<u> </u>
🔽 Est	mate TIC	factr.k02	2	Adjustment O ₂ i	ngassing rate	e (x kLaCO2)	Limestone+FeII PineForest.exe
TIC	42.25	factr.k1Fe	1	Adjustment abio	otic homoger	eous rate	
SO4	330	factr k2Fe	0	Adjustment abio	otic heteroge	neous rate	
а	4.0	bactMPN	5.30E+11	Iron oxidizing ba	icteria	Can simi	ulata limostono troatmont
Ca	56	SICCPPT	0.3	Calcite saturatio	n limit	Carronni	
Mg	51	H2O2mmo	0	Hydrogen perox	ide added	followed	by gas exchange and Fell
Na	7.4	factr.kh2o	2 1	Adjustment to H	202 rate	ovidation	in an aerobic pond or aerol
TempO	11.63	FellRecirculat	ed Felll	2000		UNIUALIUI	In an aerobic pond or aeror
SC.uS	/cm 700					wetland,	or the independent treatme
DO	0.4	Generate Kin	etics Output			stons (no	t in sequence)
	V Pla	ot Dis. Metals 📄 Plot Ca	a, Acidity	Plot Sat Index		sichs (IIC	n in sequence).

PHREEQC Coupled Kinetic Models Sequential Steps Caustic <u>+</u> Limestone Dissolution <u>+</u> Fe(II) Oxidation Pine Forest ALD + Aerobic Wetlands

	000		Add	Chemical to	Fix Initial pH	7.	3
HowGPM	690		© C	aO 💿	Ca(OH)2	01	NaOH
Fe 14	4.0		Limestone	e and Fell I	Kinetic Consta	ints	
Estimat	e Fe2		EXPccDIS	0.67	M/M0cc	1.	00
Fe2 14	4.0		factr.kCO2	1	factr.kO2	2	
AI 0.	09		factr.k1Fe	1	factr.k2Fe	0	
Mn 3.	1		bactMPN	5.3E+1	SICCPPT	0.	3
pH 5.	79		H2O2mmol	0	factr.kh2o2	1	
Alk 26	6						Felli Re
Estimat	e TIC	Step	Time(s) kLa	CO2(1/s)	SAcc(cm2/n	nol)	Temp2
TIC 42	2.25	1:	14240	0.00001	0.72e+02	2	11.63
SO4 33	30	2:	60	0.02	0		11.6
CI 4.	0	3:	47015	0.00002	0		12.16
Ca 56	6	4:	15	0.001	0		12.16
Mg 5	1	5:	28814	0.00003	0		12.15
	4	6:	15	0.02	0		12.15
Na 7.	1.63	7:	21972	0.00002	0		12.04
TempC 1	1.03						12.04
TempC 1 SC.uS/cm	700	8:	15	0.02	0		
TempC 1 SC.uS/cm TDS	700	8: 9:	15 3979	0.02	0		11.88
TempC 1 SC.uS/cm TDS DO 0	700 550 4	8: 9:	15 3979	0.02	0		11.88

Sequential steps: Pre-treatment with caustic and/or peroxide and, for each subsequent step, variable detention times, adjustable CO₂ outgassing rates, limestone surface area, temperature, and FeIII.

Can simulate active treatment, including chemical addition or aeration, *or* passive treatment, including anoxic or oxic limestone bed, open (limestone) channels or spillways, aerobic cascades, ponds, and wetlands.

PHREEQC Coupled Kinetic Models Sequential Steps Caustic <u>+</u> Limestone Dissolution <u>+</u> Fe(II) Oxidation Silver Creek Aerobic Wetlands

FlowGPI	M 750		0.00		Ca(OH)2	NaOH	
Fe	20.0		Limestone	and Fell H	inetic Consta	ints	
Estim	nate Fe2		EXPcc	0.67	M/M0cc	1.00	
Fe2	20.0		factr.kCO2	1	factr.k02	2	
AI	0.19		factr.k1Fe	1	factr.k2Fe	0	
Mn	2.95		bactMPN	5.3E+11	SICCPPT	0.3	
pН	6.01		H2O2mmol	0	factr.kh2o2	1	
Alk	45.5					Fell Re	ci
Estim	nate TIC	Step	Time(s) kLa	CO2(1/s)	SAcc(cm2/n	nol) Temp2(C)
TIC	29.8	1:	4074	0.000001	0	13.91	
004	150	2.	20	0.005	0	14.11	
504	150	4	30	0.005	U	19.11	
G	4.0	3:	493128	0.000001	0	17.93	
Ca Ca	4.0	2: 3: 4:	493128 30	0.000001	0	17.93 18.41	
Cl Ca Mg	4.0 45.7 28.3	2: 3: 4: 5:	493128 30 842859	0.000001 0.005 0.000003	0	17.93 18.41 25.23	
Cl Ca Mg Na	4.0 45.7 28.3 2.6	2. 3: 4: 5: 6:	493128 30 842859 120	0.000001 0.005 0.000003 0.0075	0 0 0 0.72e+02	17.93 18.41 25.23 2 24.45	
Cl Ca Mg Na TempC	4.0 45.7 28.3 2.6 12.12	2. 3: 4: 5: 6: 7:	493128 30 842859 120 112429	0.000001 0.005 0.000003 0.0075 0.000005	0 0 0 0.72e+02 0	17.93 18.41 25.23 2 24.45 25.55	
Cl Ca Mg Na TempC SC.uS/c	4.0 45.7 28.3 2.6 12.12 cm 502	2 3: 4: 5: 6: 7: 8:	30 493128 30 842859 120 112429 120	0.000001 0.005 0.000003 0.0075 0.000005 0.0075	0 0 0 0.72e+02 0 0.72e+02	17.93 18.41 25.23 2 24.45 25.55 2 24.49	
CI Ca Mg Na TempC SC.uS/c TDS	4.0 45.7 28.3 2.6 12.12 m 502 250	2 3: 4: 5: 6: 7: 8: 9:	30 493128 30 842859 120 112429 120 141927	0.000001 0.005 0.000003 0.0075 0.00005 0.0075 0.00005	0 0 0 0.72e+00 0 0.72e+00 0 0	14.11 17.93 18.41 25.23 2 24.45 25.55 2 24.49 28.97	

Sequential steps: Pre-treatment with caustic and/or peroxide and, for each subsequent step, variable detention times, adjustable CO₂ outgassing rates, limestone surface area, temperature, and FeIII.

Can simulate active treatment, including chemical addition or aeration, *or* passive treatment, including anoxic or oxic limestone bed, open (limestone) channels or spillways, aerobic cascades, ponds, and wetlands.

٦

References
Cravotta, CA III (2003) Size and performance of anoxic limestone drains to neutralize acidic mine drainage: Journal of Environmental
Quality 32, 1277-1289.
Cravotta, CA III (2015) Monitoring, field experiments, and geochemical modeling of Fe(II) oxidation kinetics in a stream dominated
by net-alkaline coal-mine drainage, Pennsylvania, U.S.A. Applied Geochemistry 62, 96-107.
Cravotta, CA III, Means, B, Arthur, W, McKenzie, R, Parkhurst, DL (2015) AMDTreat 5.0+ with PHREEQC titration module to
compute caustic chemical quantity, effluent quality, and sludge volume. Mine Water and the Environment 34, 136-152.
Davison, W, Seed, G (1983) The kinetics of the oxidation of ferrous iron in synthetic and natural waters. Geochimica et Cosmochimica
Acta 47, 67-79.
Dempsey, BA, Roscoe HC, Ames, R, Hedin, R, Byong-Hun, J (2001) Ferrous oxidation chemistry in passive abiotic systems for the treatment of mine drainage. Geochemistry: Exploration, Environment, Analysis 1, 81-88.
Dietz, JM, Dempsey, BA (2002) Innovative treatment of alkaline mine drainage using recirculated iron oxides in a complete mix reactor. American Society of Mining and Reclamation 19th Annual Meeting, p. 496-516.
Geroni, JN, Cravotta, CA III, Sapsford DJ (2012) Evolution of the chemistry of Fe bearing waters during CO ₂ degassing. Applied Geochemistry 27, 2335-2347.
Kirby, CS, Elder-Brady, JA (1998) Field determination of Fe^{2+} oxidation rates in acid mine drainage using a continuously-stirred tank
reactor. Applied Geochemistry 13, 509-520.
Kirby, CS, Thomas, HM, Southam, G, Donald, R (1999) Relative contributions of abiotic and biological factors in Fe(II) oxidation in
mine drainage. Applied Geochemistry 14, 511-530.
Kirby, CS, Dennis, A, Kahler, A (2009) Aeration to degas CO ₂ , increase pH, and increase iron oxidation rates for efficient treatment of
net alkaline mine drainage: Applied Geochemistry 24, 1175-1184.
Langmuir, D (1997) Aqueous environmental geochemistry. Prentice Hall, New Jersey, USA, 600 p. (especially p. 58-62)
Parkhurst, DL, Appelo, CAJ (2013) Description of input and examples for PHREEQC version 3-A computer program for speciation,
batch-reaction, one-dimensional transport, and inverse geochemical calculations. USGS Techniques Methods 6-A43, 497 p.
Pesic, B, Oliver, DJ, Wichlacz, P (1989) An electrochemical method of measuring the oxidation rate of ferrous to ferric iron with
oxygen in the presence of <i>Thiobacillus ferrooxidans</i> . Biotechnology and Bioengineering 33, 428-439.
Plummer, LN, Wigley, ML, Parkhurst, DL (1978) The kinetics of calcite dissolution in CO ₂ -water systems at 5° to 60°C and 0.0 to 1.0
atm CO ₂ . American Journal of Science 278, 179-216.
Rathbun, RE (1998) Transport, behavior, and fate of volatile organic compounds in streams: USGS Professional Paper 1589, 151 p.
Singer, PC, Stumm W (1970) Acidic mine drainage: the rate-determining step. Science 167, 121-123
Stumm, W, Lee, G.F. (1961) Oxygenation of ferrous iron. Industrial and Engineering Chemistry 53, 143-146.
Stumm W, Morgan JJ (1996) Aquatic chemistrychemical equilibria and rates in natural waters (3rd): New York, Wiley-Interscience,

1022 p. (especially p. 682-691)

13