Paul Ziemkiewicz, PhD, Director West Virginia University Water Research Institute

WV AMD Task Force 31 March 2015

Coal Industry application of discharge management to control Conductivity, TDS and Sulfate in the Monongahela River

TDS Problems on the Monongahela in Pennsylvania

- First noted in late summer 2008
- Report by Tetra Tech blamed the high TDS on:
 - West Virginia
 - Drought
- In July 2009 WVWRI starts studying the river and the major tribs
- January 2010 Coal Industry TDS Working Group starts managing discharge to control TDS/sulfate
- In December 2010 PADEP declares Mon impaired for potable water use by sulfate
- Prospect of sulfate TMDL
- NPDES Sulfate limits...

Outline

- Load model Ohio, Mon, Allegheny
- Discharge mgt
- SO₄, TDS trends
- Causal factors
- Compliance
- Delisting
- Application to other river basins

EARLY FINDINGS:

Major ions: Na, SO₄, Cl, Mg, Ca, HCO₃

•Sources?

Gas development
Marcellus returned frac water
Produced water
Coal bed methane
Coal mining
Abandoned mines
Active mines-treated effluent

3RQ Monitoring Program

Began in July 2009 In response to high TDS events on Monongahela River in 2008 Expanded to include Upper Ohio and Allegheny Rivers in 2012

Funding

USGS/Water Research Institute Colcom Foundation

PARTNERS: WEST VIRGINIA UNIV. DUQUESNE UNIV. WHEELING JESUIT UNIV.

SCHEMATIC DIAGRAM UPPER OHIO BASIN

PITTSBURGH BASIN-MAJOR AMD PLANTS

Early findings:

- High EC occurred only during low flow
 - July to November
 - Most TDS was Na, Ca, SO₄
 - Source-discharge from major AMD treatment plants
- Infinite assimilative capacity during high flow
- Monongahela River high flow > 1,500 cfs
- Occurs 85% of the year

FLOW IN THE MONONGAHELA R. AT MASONTOWN PA IS GREATER

THAN 1,500 CFS 85% OF THE TIME

Probability based on 69 year USGS record

THE MODEL ALLOWS THE AMD PLANT OPERATORS TO ADJUST THEIR FLOW AS A FUNCTION OF RECEIVING STREAM FLOW AND TARGET TDS

Drought

Target stream [TDS]	500	mg/L
Stream Q (cfs)	500	cfs 🛛
Factor of safety	2.0	
	MODEL OUT	PUT
AMD	Pumping Rate	
plant	Q (cfs)	Q (gpm)
А	0.7	323
В	0.1	54
С	0.9	387
etc.		

Mid-range river flow

Target stream [TDS]	500	mg/L	
Stream Q (cfs)	3,600 cfs		
Factor of safety	2.0		
		1.4	
	MODELOUT	PUT	
AMD	Pumping Rate		
plant	Q (cfs)	Q (gpm)	
А	5.2	2,322	
В	0.9	387	
С	6.2	<mark>2,787</mark>	
etc.			

Response of TDS concentration to change in river flow at M82. The vertical red line is Q=1,500

Theoretical: conservative assumptions

Observed: includes safety factor of 2x

¥

RGINIA UNIVERSITY r Research Institute

Whiteley Ck. Loads and concentrations are 180° out of

phase

WEST VIRGINIA UNIVERSITY

Significant events

- January 2010-Industry initiates discharge management
- May 2011-PA restricts produced water processing in POTWs
- May 2013-Mannington RO plant goes online

MONONGAHELA R. ELIZABETH PA JUL 2009 TO FEB 2015

SO₄ concentration

5-Jul-1

Apr

-an A -Mar-

4

NoV-

ġ

9

Sep

Ą

SO₄ load

Sulfate-Monongahela R. Jul 2009 to Feb 2015

itute

TWO SULFATE EXCEEDANCES SINCE JAN 2010 (100

SAMPLES)

Masontown PA

Pt. Marion PA

	Monongahela	10-Aug-12		Monongahela	7-May-13	
	NUTUIgatieta	10-Aug-12		River mile	mg SO4/L	
_	River mile	mg SO4/L		 N/11	96	
	M23	104			50	
	M61	136		M23	110	
	IVIOL	150	Anion/	M61	76	
	M82	254 🖊		M82	102	
	M89	119		102	102	Anion/
	M102	72	1.37	M89	274	cation=
	ΙνιτΟΖ	12		M102	111	0.93

Monongahela River Sulfate

Mean values with 95% confidence intervals

~143 samples/station

Concentration (mg SO₄/L)

Load (t SO₄/day)

IMPROVEMENTS: CAUSAL FACTORS

- AMD treatment plants:
 - Managed discharge
 - Coal Industry TDS working group
 - Started in January 2010
 - Pumping rates based on flow in Monongahela River
 - Voluntary, effective, efficient
- Brine:
 - Improved water management
 - Decreasing rate of surface disposal
 - POTWs
 - Partial treatment plants
 - Increased recycling

SUMMARY

- Sulfate load in the Monongahela River averages 412,000 tpy
- Treated coal mine drainage accounts for between 202,000 tpy sulfate (48% of TDS)
- Water quality is improving
- Active chemistry/load monitoring is critical
- Managed discharge from active mines
- Three Forks Creek Stream Dosing
- Reduction of brine @ POTWs

How does this apply to MTM?

	scenario A	scenario A scenario B	
EC			MTM + UG mine
criteria	Current	MTM	discharge mgt.
<300	123	49	60
301-500	71	67	89
500-700	82	59	262
701-900	219	200	68
900-1100	63	101	31
>1100	66	148	113
EC			
criteria		Cumulative*	
<300	123	49	60
<500	194	116	149
<700	276	175	411
<900	495	375	479
<1100	558	476	510
>1100	66	148	113

* This table estimates stream length under various EC criteria if scenarios A, B, C were implemented.

FOR MORE INFORMATION PLEASE CONTACT:

Paul Ziemkiewicz pziemkie@wvu.edu

304 293 6958

