MCHM CHEMICAL PROPERTIES, TRANSPORT, AND FATE IN COAL PREPARATION PLANTS

Aaron Noble, PhD Assistant Professor Mining Engineering Tom He, PhD Environmental Geochemist West Virginia Water Research Institute

April 1, 2015

BACKGROUND

BACKGROUND

- January 9, 2014: Elk River Chemical Spill
- 10,000 gallons reportedly leaked into Elk River, Charleston
- WV American Water intake 1.6 miles
 downstream
- Contaminated water in system before WVAW can shut off intake
- 'Do not use' order issued to 300,000 customers
- In effect for about 10 days

4-METHYLCYCLOHEXANE METHANOL

- Chemical notably involved in the spill
- Was really important this time last year

MCHM TOXICITY

What we knew at the time:

- Not well characterized
- Acute oral dose-825 to 2,000 mg/kg body weight, test results from rats
- Irritant
 - Skin
 - Eyes
 - Lungs

Information based on concentrated MCHM

MCHM TOXICITY

What we have learned since then:

- CDC Threshold = 1 mg/ L MCHM in drinking water.
- Aqueous Smelling Threshold

 WVTAP = 0.15 µg/L
 VT = 1.2 µg/L

MCHM USES

- MCHM is a "frother" used in froth flotation
- Flotation is used to treat the finest fraction of coal (<150 microns)
- In flotation, coal attaches to air bubbles and floats forming a layer of froth.

MCHM USES

- Flotation requires:
 - A lot of small air bubbles to capture the coal.
 - A fairly stable froth that can cleanse the mixture.
- <u>Bubble size</u> is very important.
- MCHM regulates bubble size by preventing coalescence.

COAL PREPARATION PLANT

COAL PREPARATION PLANT

OUR QUESTION

• Spilling 10,000 gallons of anything into the river at one time is usually a bad thing...

 But what about the ~½ gallon of MCHM used daily by several active coal prep plants?

ESTIMATED MAXIMUM MCHM CONCENTRATION IN A VERY HIGH USE SETTING: MET COAL, HIGH FINES CONTENT

MCHM density	0.88	g/mL	
MCHM use	7,500	g <mark>al/yr</mark>	
	0.014	gpm	
	54.01	ml/min	
	47.53	g/min	
	47,529	mg/min	
Slurry liquid/solid	0.70		
Prep plant throughput	5,000	gpm	
	18,925	L/min	
MCHM concentration	3.59	mg/L	

Assumes:

- No MCHM adheres to coal or tailings
- No decomposition in the slurry impoundment

What about the "smell test?"

Source: Ziemkiewicz, WVCA Meeting, 2014

OUR QUESTIONS

- How does MCHM partition between the coal and tailings?
- Does significant MCHM drain from the tailings impoundment/ underground storage?
- What other mechanisms control MCHM concentration?

RESEARCH APPROACH

- Site Sampling
 - Goal: Directly measure MCHM in plant and discharges

- Laboratory Tests
 - Goal: Explain the plant data by examining the transport mechanisms

SITE SAMPLING

SITE SAMPLING

 Two sites selected for MCHM partitioning study:

	Site A	Site B	11/1-1	
Similar	Northern Appalachia	Central Appalachia	Different	
	Conventional Flotation	Column Flotation	Different	
	Slurry Feed: 9,600 gpm	Slurry Feed: 1,200 gpm		
	MCHM: 6 – 7 PPM	MCHM: 6 – 10 PPM		
	Underground Injection	Surface Impoundment		
	No Deslime	Deslime	Different	

DATA COLLECTION

- Collected water/slurry/solid samples from various streams in plant:
 - Flotation Feed
 - Flotation Con
 - Flotation Tailings
- Thickener Feed
- Thickener UF
- Thickener OF

- Filter Effluent
- Clean Coal
- Etc.
- Collected water samples from environmental discharges
 - Impoundment Drain
 - Groundwater monitoring wells
- Analyzed water for MCHM (EPA Method SW8015C)
- Analyzed solids for size, ash, moisture.

SITE A DATA: SAMPLING LOCATIONS

SITE A DATA: CONCENTRATIONS

SITE A DATA: MASS DISTRIBUTION

SITE B DATA: SAMPLING LOCATIONS

SITE B DATA: CONCENTRATIONS

SITE B DATA: MASS DISTRIBUTION

PUTTING EVERYTHING TOGETHER...

SUMMARY

- In both cases, we observed a "mysterious" MCHM disappearance.
 - Was the plant operating at a lean dosage?
 - Did we randomly mishandle particular samples?
 - Did the lab systemically mishandle the samples?
 - Is the MCHM sorbing or volatilizing?

No, we would have observed poor plant performance.

No, downstream samples corroborate disappearance.

Can't be ruled out.

Hmm...

VOLATILIZATION?

- Frothers are known to quickly volatilize when exposed to agitation.
- Our laboratory data confirms that MCHM volatilizes rapidly, even without agitation

VOLATILIZATION

- MCHM volatilization measured under <u>quiescent</u> conditions
- Half-life = ~4 days
- Significant for long timescales (impoundments)

VOLATILIZATION

- Henry's law constant for MCHM ≈ 6.4 x 10⁻⁹ atm L mol⁻¹
 - Fragment constant estimation method (TOXNET)
- Predicted volatilization half-life = 51 days!
 – Model Lake Assumption

ADSORPTION TO FINES?

• In both cases, the mysterious disappearance accompanied the introduction of fine coal particles.

SITE A DATA: MASS DISTRIBUTION

SITE B DATA: MASS DISTRIBUTION

ADSORPTION TO FINES?

 Lab data also confirms that MCHM sorbs quickly onto coal and tailings.

 ~50% removed within 5-10 minutes.

WHAT ABOUT DESORPTION?

 Repeated column leaching tests (x8) consistently showed no MCHM in the leachate, even under "spiked" conditions.

 Corroborates field testing that shows no MCHM in the environmental discharges.

CONCLUSIONS

- Empirical field data and laboratory testing show that MCHM is likely (and permanently) adsorbing onto the fine coal.
- Data shows that NO MCHM is present in environmental discharges.
- Peer reviewed publications have been submitted:
 - He, Y.T. Thomas, A. Noble, and P. Ziemkiewicz. "Investigation of MCHM transport mechanisms and fate: Implications for coal beneficiation." Chemosphere 127 (2015): 158-163.
 - Noble, A., Y.T. He, and P. Ziemkiewicz. "Partitioning Behavior of 4-Methyl Cyclohexane Methanol in Two Appalachian Coal Preparation Plants." International Journal of Coal Preparation and Utilization (in review).

FOR MORE INFORMATION PLEASE CONTACT:

Aaron Noble, PhD canoble@mail.wvu.edu 304-293-9959

