Decarbonating at the St. Michael Treatment Plant: Effect on Cost, Sludge, and Sedimentation

Brad Parker: Rosebud Mining

Brent Means: Office of Surface Mining

Rich Beam: Pa Bureau of Abandoned Mine Reclamation

Presentation Topics

- 1. Background on Decarbonation
- 2. St. Michael decarbonation retrofit
- 3. Calculating CO₂ gas transfer coefficients for decarbonation units
- 4. Use gas transfer coefficients to predict decarbonation at St. Michael
- 5. Compare predictions to actual decarbonation performance at St. Michael
- 6. Decarbonation Cost Savings

Background on Decarbonation

• Goal of decarbonation is to exsolve dissolved carbon dioxide from water to lessen alkali consumption

 Dissolved CO_{2(aq)} species release acidity when pH is increased via alkali addition – leads to increased chemical consumption

Background on Decarbonation

- The amount of CO₂ acidity released is strongly dependent on the change in pH caused by alkali addition
 - E.g. Consider pH 5.7, Alkalinity 48 mg/L as CaCO3, TIC 61 mg/L

Background on Decarbonation/Aeration

- The process of Decarbonation is conducted before any other treatment process to remove CO₂ before pH is increased
- Decarbonation is the process of mixing water and air to remove $CO_{2(aq)}$
- Two common methods of decarbonation in mine water:
 - 1. Forcing water through air (e.g. Surface Aerators)
 - 2. Forcing air through water (e.g. Diffused Aeration)

Methods of Decarbonation: Surface Aerators

Aka Mechanical Aeration

Methods of Decarbonation: Diffused Aerators

Background

- Mine Drainage contains elevated concentrations of CO_{2(aq)}
- Recognized by Kostenbader (1970) and Jagman (1988)
- Pa AML interested in improving decarbonation for new treatment plants
- Rosebud Mining interested in retrofitting St. Michael Treatment Plant for decarbonation
- Formed an evaluation team to study decarbonation options

3-Step Methodology.

- <u>Evaluation Team used a 3-Step Methodology to evaluate</u> <u>decarbonation systems:</u>
 - 1. Field-measure $CO_{2(aq)}$ gas transfer coefficients for several operating decarbonation systems
 - 2. Use the measured gas transfer coefficients to predict the decarbonation performance if the systems were scaled and installed at St. Michael

3. Compare the predicted results to the actual results after a decarbonation unit is installed at St. Michael to validate our understanding of decarbonation

Project Location

Step 1: Field-Measure Gas Transfer

$$\Delta CO_{2(aq)} / \text{time} = -K_{LCO2,a} * (CO_{2(aq)\text{sat atm}} - CO_{2(aq)\text{raw}})$$

a = surface to volume ratio

Step 1: Field-Measure Gas Transfer

- Studied two sites that use surface aerators for decarbonation. These sites are configured as Continuous stirred Reactors (CSR) (Pump Water into Air)
- Studied two sites that use a Maelstrom Oxidizer for decarbonation. Plug Flow Reactor (Pump Air into Water)

 $\Delta CO_{2(aq)} / \text{time} = -K_{LCO2,a} * (CO_{2(aq)\text{sat atm}} - CO_{2(aq)\text{water}})$

Lancashire: Continuous Stirred Reactor Surface Aerator

Surface Aerator configured as CSR at Lancashire Treatment Plant

12.CD0.0

Surface Aerator configured as CSR at Renton Treatment Plant

Plug Flow Coarse-bubble Aerator at Trent Site

Plug Flow Coarse-bubble Aerator at Sykesville

Step 1: Field-Measure Gas Transfer

$$\Delta CO_{2(aq)} / \text{time} = -K_{LCO2,a} * (CO_{2(aq)\text{sat atm}} - CO_{2(aq)\text{raw}})$$

- Time = Measured using dye and stopwatch
- CO_{2(aq)water} = Measured CO_{2(aq)} using two methods:
 - 1. Calculated from pH, temp, and alkalinity
 - 2. Collected Total Inorganic Carbon (TIC) sample for lab analysis
- CO_{2(aq)Sat Atm} = Geochemist Workbench to equilibrate water to atmospheric conditions

Measured the retention time at both Plug Flow Reactor sites using dye tracer and stopwatch

Bex 2 Flow->

Step #1: Field-Measure Gas Transfer

	Reactor Type	HP	Retn Time (^{min})	Flow (gpm)	Raw pH	End pH	Raw CO _{2(aq)} (mg/L)	End CO _{2(aq)} (mg/L)	Kla (sec-1)
Lancashire	CSR	30	Х	4100	6.1	6.4	129	64	5.20E-4
Renton	CSR	25	Х	1600	6.1	6.5	448	143	8.23E-4
Trent	Plug	20	0.5	1108	5.9	6.5	254	62	4.72E-2
Sykesville	Plug	39	2	918	6.4	7.4	46	11	1.21E-2

Step #2: Predict Decarbonation at St. Michael

- Pumped Flow ranges 2,000 to 10,000 gpm
- pH = 5.75
- Fe = 120-140 mg/L
- Alkalinity = 48 mg/L as CaCO3
- **3 Sources of Acidity:**
- 1. Fe ppt
- 2. CO₂
- 3. Calcite ppt

Step #2: Predict Decarbonation at St. Michael

- St. Michael uses slaked lime to achieve treatment pH 8.7
- 3 sources responsible for lime consumption during pH increase:
- 1. Fe ppt
- 2. CO₂ Species
- 3. Calcite formation (difficult to predict lime consumption)
 - Dissolved-precipitate $Ca^{2+} + HCO_3^{-} = CaCO_{3(s)} + H^+$
 - Recarbonation $Ca(OH)_{2(s)} + CO_{2(aq)} = CaCO_{3(s)} + H_2O$

Step #2: Predict Decarbonation at St. Michael

• Estimate purposefully didn't include cost associated with calcite ppt. Very conservative estimate (on purpose)

Trent Plug Flow Kla applied to St. Michael

• A 2,730 gallon tank is required for a 3,600 gpm flow to provide 45.5 sec of RT

Predicted Daily Lime Costs using Trent K_{la}

No Decarbonation

Decarbonation

- Estimate a 43% reduction in Lime consumption; Not considering effect of calcite ppt.
- Power requirement of 68 HP, so net predicted daily savings = \$297 treating at 3,600 gpm (not considering any reduction in calcite ppt)

Step #3: Compare Predicted vs. Actual Savings

- 2 Installed in Aug. 2014, each sized for max flow of 2,500 gpm. Two 60 HI blowers with VFD
- At 3,600 gpm, $CO_{2(aq)}$ decreased from 183 to 19 mg/L in 46 secs of RT

Step #3: Compare Predicted vs. Actual Savings

	Daily Lime pH 8.7 (tons/day)	Annual Electrical Cost for blower	Annual Lime Cost	Annual Net Savings
Predicted No Decarbonation (Assume No calcite ppt)	5.8	NA	299,866	
Actual No Decarbonation	10.1	NA	\$516,110	
Predicted using Trent KLa	3.3	\$51,231	\$168,852	\$117,621
Actual	3.8	\$44,785	\$194,180	\$277,146

Unexpected side effect of effective Decarbonation: Sedimentation issues

St. Michael: Unexpected side effect of effective Decarbonation

	Effluent Total Fe (mg/L)	Polymer	Sludge % Solids (w/w)	Sludge pumping Frequency	Sludge Recycle Ratio (recycled solids/produced solids)
No Decarbonation	< 1.6	No	32.9%	Weekly	251:1
Decarbonation	2-3*	Yes	9.1%	Daily	60: 1

*Until a polymer, sludge recirculation rate, and sludge pumping program was instituted to solve the settling issue

• Hypothesized the settling issue was a result of drastic reduction in calcite ppt (sludge glue)

Pre and Post Decarb Sludge Analysis

Method	Method	Units	Pre Decarb	Post Decarb
CO_2 (as $CaCO_3$)	ASTM C 471M	% CaCO3 Dry	67.7%	23.9%
TIC (as CaCO ₃)	ASTM D 1756	% CaCO3 Dry	63.8%	17.6%
Neutralization Potential, Dry	PA DEP	% CaCO3 Dry	73.1%	30.1%

Conclusions

- Its important to determine the amount of CO₂ species in any mine water (not just "AMD") if pH adjustment occurs via chemical dose
- Important to evaluate whether the payback exists for decarbonation

 Its important to evaluate the type of decarbonation unit for a site (not all decarbonation units created equal)