TDS Release Prediction Based on Acid-base Account Parameters

Jessica Odenheimer Joyce¹, Jeff Skousen¹, Louis M. McDonald¹, Dorothy Vesper² Division of Plant and Soil Sciences¹, Division of Geology and Geography², West Virginia University

West Virginia University

Appalachian Research Initiative for Environmental Science (ARIES)

• ARIES

- Study the impacts of the coal mining industry
- Focusing on water, land, and air issues
 - Virginia Tech, West Virginia University, Marshall University, University of Pittsburgh, Penn State, Ohio State, Via College of Osteopathic Medicine, Georgetown University, and John Hopkins University

Appalachian Research Initiative for Environmental Science (ARIES)

Currently divided into four areas:

- 1. Stream protection and restoration
- 2. Materials characterization and handling
- 3. Water Impacts of coal mining
- 4. Community and health impacts

Task 3 – Prediction of TDS Release

CaCO3 EQUIVALENT

(TONS/THOUSAND TONS of MATERIAL)

Recommended EPA guideline for TDS release:

- 300 mg/L monthly average
- 500 mg/L maximum

Goal: Quick Test

Overburden Placement Plans

Segregation

Alkaline Addition

Mixing

- ABA was the first technology to assess the chemical quality of overburdens prior to disturbance
- ABA was applied to predict post-mining drainage quality
 - (Knabe, Smith, Sobek, Grube, Erikson, Hedin, Perry, Freeman, Sturm, and many others)

Leaching Tests

TONS THOUSAND TONS of MATERIAL

CaCOz

EQUIVALENT

							Excess	Acidity	Excess Alk	alinity
	Bottom					<u>CaCO₃ ec</u> Max.	uivalent - to Amount	ns 00 to Max.	ns of iteria	<u>al</u>
Sample Number	depth (feet)	Rock type	Fizz	Color	%S	from %S	present (NP)	needed (pH7)	Excess	Paste pH
1	3	Soil	0	7/3	.035	1.09	3.52		2.53	4.4
2	6	SS	0	8/6	.029	0.91	-1.51	2.42		4.3
3	6	SS	0	8/2	.023	0.72	-1.59	2.31		4.6
4	14	SH	0	7/4	.009	0.28	-0.60	0.88		4.6
5	17	SS	0	7/4	.009	0.28	-0.09	0.37		4.7
6	20	SH	0	8/3	.011	0.34	-0.17	0.51		4.5
7	24	MS	0	7/1	.263	8.22	-0.94	9.16		4.8
8	28	MS	1	7/1	.179	5.59	78.33	,	72.74	7.8

Figure 1 Dry Disposal of Acid Material

Purpose

It would be ideal to have a technique similar to ABA to determine a Total Dissolved Release Index:

High, Moderate, or Low

so that operators can properly treat, isolate, and/or handle their overburden in a manner that will decrease TDS runoff from their site.

Introduction

Total Dissolved Solids (TDS)

- All inorganic and organic substances contained in water that can pass through a 2 micron filter.
- Electrical Conductivity
- Gravimetrically:
 - Filter water sample
 - Evaporate at 180°C in a pre-weighed dish
 - The increase in weight (the dried residue) represents TDS measured in (mg L⁻¹)

TDS Composition

Down-Stream Coal Mine Mean TDS: <u>516</u> mg L⁻¹

Total Dissolved Solids (TDS)

Drínkíng water standards

Contaminant	Secondary MCL	Noticeable Effects above the Secondary MCL
Total Dissolved Solids (TDS)	500 mg/L	hardness; deposits; colored water; staining; salty taste

• USEPA guideline to assist public water systems in managing their drinking water for taste, color and odor, but not typically enforced.

Total Dissolved Solids (TDS)

EPT survival decreases as TDS increases

Objective

 To develop a TDS release index from overburden material that could be used to predict and screen overburden materials that contribute to high TDS concentrations (> 500 mg/L)

- Simulated weathering with dilute nitric acid (HNO₃)
- Compared to ABA analysis

Materials & Methods

- 41 samples from WV, VA, and KY
- Emphasis on collecting a wide variety of rock types:
 - Black Shales, Mudstones, Brown Sandstone, Gray Sandstone

Overburden ABA Classification Scheme Based on Acid/Base

Low TDS (neutral)

Medium TDS

High TDS

High Alkalinity

High Acidity

Mich - Birch Pil

ZLOZ/8L/LO MN-04-07

ACID-BASE

Materials & Methods

Simulated Weathering via Shaking

Simulated Weathering via Shaking

6, 24, 72, 120, 168 hours, until concentrations of ions released stabilized.

AI, Fe, Mg, Mn, Ca, P, K, Na, SO⁴, pH, EC

Magnesium Released From all 41 Samples Shaken In Dilute HNO₃

Can we use the concentration of ions released from these overburden samples to predict TDS release?

EC versus Sum Of Cations Released From Dilute HNO₃

Calculated TDS

- TDS was calculated from paste EC using equations (1) and (2) (Evangelou, 1998):
 - 1. $EC < 1 dS m^{-1}$ TDS = 640 * EC (dS m⁻¹)

2. <u>EC > 1dS m⁻¹</u>, TDS = 640 * [EC (dS m⁻¹)] ^{1.087}

(64 = average equivalent weight of salts in natural waters)

						CaCO3 ec	quivalent - to	ns/1000 ton	s of materia	al
Sample Number	Bottom depth (feet)	Rock type	Fizz	Color	%S	Max. from %S	Amount present (NP)	Max. needed (pH7)	Excess	Paste pH
1	3	Soil	0	7/3	.035	1.09	3.52		2.53	4.4
2	6	SS	0	8/6	.029	0.91	-1.51	2.42		4.3
3	6	SS	0	8/2	.023	0.72	-1.59	2.31		4.6
4	14	SH	0	7/4	.009	0.28	-0.60	0.88		4.6
5	17	SS	0	7/4	.009	0.28	-0.09	0.37		4.7
6	20	SH	0	8/3	.011	0.34	-0.17	0.51		4.5
7	24	MS	0	7/1	.263	8.22	-0.94	9.16		4.8
8	28	MS	1	7/1	.179	5.59	78.33		72.74	7.8

Maximum Potential Acidity

• MPA represents the acid potential of an overburden sample due to sulfide materials.

• MPA is calculated by multiplying % S by 31.25

Maximum Potential Acidity (MPA)

* 31.25

						CaCO ₃ ec	uivalent - to	ns/1000 ton	s of materia	al
Sample Number	Bottom depth (feet)	Rock type	Fizz	Color	%S	Max. from %S	Amount present (NP)	Max. needed (pH7)	Excess	Paste pH
1	3	Soil	0	7/3	.035	1.09	3.52		2.53	4.4
2	6	SS	0	8/6	.029	0.91	-1.51	2.42		4.3
3	6	SS	0	8/2	.023	0.72	-1.59	2.31		4.6
4	14	SH	0	7/4	.009	0.28	-0.60	0.88		4.6
5	17	SS	0	7/4	.009	0.28	-0.09	0.37		4.7
6	20	SH	0	8/3	.011	0.34	-0.17	0.51		4.5
7	24	MS	0	7/1	.263	8.22	-0.94	9.16		4.8
8	28	MS	1	7/1	.179	5.59	78.33	•	72.74	7.8

Material containing 1% S (assuming all as pyrite) would yield an amount of sulfuric acid which would require 31.25 Mg of calcium carbonate to neutralize 1000 Mg of the material

Calculated TDS versus Maximum Potential Acidity

Calculated TDS versus Maximum Potential Acidity

MPA Summary

 Maximum Potential Acidity may be a practical parameter for predicting TDS release

MPA Range	TDS Concentration	TDS Release Index
g kg ⁻¹	mg L ⁻¹	
0.0 to <1.0	< 150	Low
1.0 to <3.0	< 300	Medium
3.0 +	> 500	High

MPA Summary

						CaCO ₃ e	guivalent - to	ns/1000 ton	s of materia	al
Sample Number	Bottom depth (feet)	Rock type	Fizz	Color	%S	Max. from %S	Amount present (NP)	Max. needed (pH7)	Excess	Paste pH
1	3	Soil	0	7/3	.035	1.09	3.52		2.53	4.4
2	6	SS	0	8/6	.029	0.91	-1.51	2.42		4.3
3	6	SS	0	8/2	.023	0.72	-1.59	2.31		4.6
4	14	SH	0	7/4	.009	0.28	-0.60	0.88		4.6
5	17	SS	0	7/4	.009	0.28	-0.09	0.37		4.7
6	20	SH	0	8/3	.011	0.34	-0.17	0.51		4.5
7	24	MS	0	7/1	.263	8.22	-0.94	9.16		4.8
8	28	MS	1	7/1	.179	5.59	78.33	,	72.74	7.8

Net Neutralization Potential

						CaCO ₃ e	guivalent - to	ns/1000 tor	is of mater	al
Sample Number	Bottom depth (feet)	Rock type	Fizz	Color	%S	Max. from %S	Amount present (NP)	Max. needed (pH7)	Excess	Paste pH
1	3	Soil	0	7/3	.035	1.09	3.52		2.53	4.4
2	6	SS	0	8/6	.029	0.91	-1.51	2.42		4.3
3	6	SS	0	8/2	.023	0.72	-1.59	2.31		4.6
4	14	SH	0	7/4	.009	0.28	-0.60	0.88		4.6
5	17	SS	0	7/4	.009	0.28	-0.09	0.37		4.7
6	20	SH	0	8/3	.011	0.34	-0.17	0.51		4.5
7	24	MS	0	7/1	.263	8.22	-0.94	9.16		4.8
8	28	MS	1	7/1	.179	5.59	78.33		72.74	7.8

Relationship Between Net Neutralization Potential (NNP) and TDS_(Calc) for 41 Overburden Samples

Relationship Between Net Neutralization Potential and TDS for 38 Overburden Samples

Net Neutralization Potential (g kg⁻¹)

Relationship Between Net Neutralization Potential and TDS for 38 Overburden Samples

Net Neutralization Potential (g kg⁻¹)

NNP Range	TDS Concentration	TDS Release Index
g kg ⁻¹	mg L ⁻¹	
≥ -2.0	< 300	Low
< -2.0	≥ 300	High

Net Neutralization Potential (g kg⁻¹)

Net Neutralization Potential Summary

 NNP may be a practical parameter for predicting TDS release

NNP Range	TDS Concentration	TDS Release Index
g kg ⁻¹	mg L ⁻¹	
≥ -2.0	< 300	Low
< -2.0	≥ 300	High

Summary

MPA	TDS	TDS Release
Range	Concentration	Index
g kg ⁻¹	mg L ⁻¹	
0.0 to <1.0	< 150	Low
1.0 to <3.0	< 300	Medium
3.0 +	> 500	High

NNP Range	TDS Concentration	TDS Release Index
g kg ⁻¹	mg L ⁻¹	
≥ -2.0	< 300	Low
< -2.0	≥ 300	High

Summary

- Goal: "Quick Test"
- **Findings:** MPA + NNP provide insight on whether overburden will release high TDS
- **Progress:** Compare these results to field experiments

ARIES Statement

The work reported today was sponsored by the **Appalachian Research Initiative for Environmental** Science (ARIES). ARIES is an industrial affiliates program at Virginia Tech, supported by members that include companies in the energy sector. The research under ARIES is conducted by independent researchers in accordance with the policies on scientific integrity of their institutions. The views, opinions and recommendations expressed herein are solely those of the authors and do not imply any endorsement by ARIES employees, other **ARIES-affiliated researchers or industrial members.** Information about ARIES can be found at http://www.energy.vt.edu/ARIES

Acknowledgements

Thank you to Jeff Skousen To Louis McDonald, Dorothy Vesper, Lee Daniels, and Zenah Orndorff To Marianne Mannix, and Joan Wright

&

To Moody & Associates, Inc.

Questions?

Relationship Between Neutralization Potential (NP) and TDS_(Calc) for 41 Overburden Samples

RELATIONSHIP BETWEEN NEUTRALIZATION POTENTIAL (NP) AND TDS (CALC) FOR 41 OVERBURDEN SAMPLES.

RELATIONSHIP BETWEEN NET NEUTRALIZATION POTENTIAL AND TDS (WITHOUT THREE OUTLIERS) FOR 38 OVERBURDEN SAMPLES.

Net Neutralization-Potential (g kg⁻¹)

NET NEUTRALIZATION POTENTIAL (NPP) AND ITS POTENTIAL RELEASE OF TOTAL DISSOLVED SOLIDS

TDS Release Index	TDS Concentration	NNP Range
	mg L-1	g kg -1
Low	< 300	≥ -2.0
High	≥ 300	< -2.0

Sample Number	Bottom depth (feet)			Color				Acidity			
		Rock type	Fizz		%S	CaCO ₃ equivalent - tons 90 tons of material					
						Max. from %S	Amount present (NP)	Max. needed (pH7)	Excess	Paste pH	
1	3	Soil	0	7/3	.035	1.09	3.52		2.53	4.4	
2	6	SS	0	8/6	.029	0.91	-1.51	2.42		4.3	
3	6	SS	0	8/2	.023	0.72	-1.59	2.31		4.6	
4	14	SH	0	7/4	.009	0.28	-0.60	0.88		4.6	
5	17	SS	0	7/4	.009	0.28	-0.09	0.37		4.7	
6	20	SH	0	8/3	.011	0.34	-0.17	0.51		4.5	
7	24	MS	0	7/1	.263	8.22	-0.94	9.16		4.8	
8	28	MS	1	7/1	.179	5.59	78.33	,	72.74	7.8	

A number greater than **5.0** in the Excess Acidity Column is considered **TOXIC**

Acknowledgements

Thank you to Dr. Skousen for your mentorship and pushing me to be a better scientist.

To Dr. McDonald for your patience and insight.

To Dr. Vesper for being a wonderful and inspiring teacher.

Thank you to Dr. Daniels and Zenah Orndorff for sharing their data.

A special thanks to Marianne Mannix for the sulfur analysis, and Joan Wright for operating the ICP.

Thank you to my friends for support and making these past two years incredible.

Thank you Alex Joyce and my family for their endless encouragement!

Introduction

Introduction Environmental Impacts:

- Deforestati
- Landscape
- Acid mine
- Erosion
 Acid rain

Virginia Tech Leaching Columns

Purpose

To determine at Total Dissolved Release Index:

High, Moderate, or Low

so that operators can properly treat, isolate, and/or handle their overburden in a manner that will decrease TDS runoff from their site.

Collaborative Effort: Virginia Tech

Collaborative Effort: University of Kentucky

ARIES Subtask 3.2.2: Field/Bulk Scaling Factor Development

Bent Mountain, KY Infiltration Plots; original spoil samples currently being run in columns at VT to compare column data against 5 year field leachate EC, ions, etc.

Overburden Placement Plans

Segregation

Alkaline Addition

Sample Number	Bottom depth (feet)					CaCO ₃ equivalent - tons/1000 tons of material					
		Rock type	Fizz	Color	%S	Max. from %S	Amount present (NP)	Max. needed (pH7)	Excess	Paste pH	
1	3	Soil	0	7/3	.035	1.09	3.52		2.53	4.4	
2	6	SS	0	8/6	.029	0.91	-1.51	2.42		4.3	
3	6	SS	0	8/2	.023	0.72	-1.59	2.31		4.6	
4	14	SH	0	7/4	.009	0.28	-0.60	0.88		4.6	
5	17	SS	0	7/4	.009	0.28	-0.09	0.37		4.7	
6	20	SH	0	8/3	.011	0.34	-0.17	0.51		4.5	
7	24	MS	0	7/1	.263	8.22	-0.94	9.16		4.8	
8	28	MS	1	7/1	.179	5.59	78.33	¥.	72.74	7.8	

•Each geologic layer is identified by:

- 1. Rock color
- 2. Rock hardness
- 3. Rock fizz
- •Toxic, potentially toxic, and alkaline-producing overburden are determined by:
 - 1. pH
 - 2. Total S
 - NP basic carbonates, exchangeable bases, basic silicates

