Bromide in Underground Mine Water of the Pittsburgh Coal

Joe Donovan *
Tim Denicola **
Paul Ziemkiewicz ***
David Light *

- * WVU Department of Geology/ Geography
- ** Skelly and Loy, Inc.
- *** WV Water Research Institute

Acknowledgments Liviu Magean (NRCCE)

bromide as indicator for shale gas wastewater

- Br present in mine drainage at low concentrations (generally < 0.1 mg/L) but reaches concentrations of 300-1600 mg/L in flowback (FB) and produced waters (PW)
- geochemically conservative
- different molar ratios of Cl/Br for mine water (170-250) compared to Marcellus FB/PW (100-130)
- estimated chronic toxicity limit of 1 mg/L in groundwater (Flury and Papritz, 1993)
- the main reservoir of Br is in seawater and marine brines

chemical signature of coal mine discharge

- elevated TDS is the main signature of mine drainage
- mainly calcium, sodium, sulfate w/ low or high pH
- TDS of discharge varies with age of discharge and degree of flooding
- very low Br
- about half the mine drainage entering the Monongahela River is from AMLs
- Active mines treat discharge to remove metals but show generally higher TDS than AMLs
- big flows mainly from underground mines

datasets for Br in mine water

- 2012 synoptic sampling of "large" AMLs in Pittsburgh seam, WV and PA (Denicola MS thesis, 2013)
- flows and inorganic chemistry
- water level monitoring in some pools
- Br in surface water (Mon & tributaries) from 2011-15

sample sites, Pittsburgh coal basin (Denicola, 2013)

research questions

- detectable bromide (Br) appears in approximately 45% of large mine water discharges in this sample – about 22% are "elevated" (>0.5 mg/L)
- what's the source?
 - connate or "first flush" mine-water ?
 - leaky gas wells in mines?
 - injected wastewater?
- let's examine the context

alkaline strata above the Pittsburgh coal

after Cecil 2012

cluster analysis (CA) dendrogram (Denicola, 2013)

CA centroids, clusters 1-6

3,4 = net acidic 1,2,5,6 = net alkaline pools

CA solute boxplots – 1

C2 = low TDS C5=intermediate TDS C6 = high TDS

all net alkaline (pools)

CA solute boxplots – 2

C2, C5, C6 have high Br

3RQ sampling sites

Bi weekly monitoring for Flow and:

pH, Acidity, Alkalinity, EC, ORP, Temperature, TDS, TSS, Al, Br, Ca Cl, Fe, Mg, Mn, Na, SO₄

Results on 3RiversQuest.org

TDS/BROMIDE
TRENDS
SINCE 2009
in
MON RIVER
TRIBS

Whiteday Creek
Indian Creek
Flaggy Meadows Run
Deckers Creek
Robinson Run
Cheat River
Dunkard Creek
Whitely Creek
Tenmile Creek
Youghihenny R.

TDS/BROMIDE TRENDS SINCE 2009 in MON RIVER

Key observations

- Elevated mine-water Br concentrations 0.5-2.7 mg/L observed in about 16 AML discharges in 2012
- most are in flooded mine pools in Pennsylvania and Wheeling area
- Spatial pattern for high Br does not strictly correlate with "mining water" signatures (high TDS)
- But high Br occurs where Marcellus well density is high
- surface water chemistry of Monongahela and its tribs also shows divergence between "Br signal" and "TDS signal"
- hydraulic injection "events" have been observed in Pittsburgh seam mines

implications

- Br can serve as an indicator for contamination of mine water by formation water
- formation water leakage into mines? flowback waters?
 not clear which
- spatial distribution suggests Marcellus development areas are where high Br tends to be found, but this could be for a number of reasons
- underground mine pools targets may be targets for contamination by non-UIC disposal of wastewaters