Cost Saving & Performance Enhancements at the Rushton AMD Treatment Plant

Jon Dietz, Ph.D. Dietz-Gourley Consulting LLC Dietz@DGengr.com www.DGengr.com

Rushton Deep Mine Discharge Pennsylvania Mines, LLC Near Phillipsburg , Pennsylvania

Rushton AMD Treatment System Pennsylvania Mines, LLC

250 ft

Rushton Mine AMD Treatment System Flow Path

Chemistry of the Rushton AMD Discharge

Pumped Flow = 3,000 - 5,000 gpm

Rushton Mine AMD Chemistry from the Initial Evaluation conducted on March 31, 2010.							
Temp		Conduct.	"Hot" Acidity	Cold Acidity	Iron	Manganese	Aluminum
°C	рН	μS	mg/L (as CaCO ₃)		mg/L	mg/L	mg/L
10.4	3.3	1950	400	600	121.5	13.5	24.0

Rushton Mine AMD Chemistry from the Pre-aeration Study conducted on July 27, 2010.							
Temp		Conduct.	"Hot" Acidity	Cold Acidity	Iron	Manganese	Aluminum
°C	рН	μS	mg/L (as CaCO ₃)		mg/L	mg/L	mg/L
10.6	4.7	1650	196	306	105.2	8.04	9.42

Treatment Process Evaluation & Improvements at the Rushton Treatment Plant

- Lime Neutralization Process
- Mixing/Aeration Process
- Polymer Flocculation Process
- Settling Process
- Sludge Management

Lime Neutralization of AMD Water Chemistry Impacts on Treatment Approaches

Hydrated Lime System

Multi-Step Process

- 1. Silo Storage
- 2. Powder Feed System
 - a) Vibrator/Auger Feed
- 3. Slurry Production
 - a) Mixing Tank
 - b) Clean Water (Process) Source
- 4. Slurry Dosing
 - a) Liquid Feed System
 - b) Scale Formation
- 5. Mixing System
 - a) Mix & Dissolve Slurry
 - b) Oxidize & Precipitate Metals

Background Chemistry Effects of Carbon Dioxide (H₂CO₃*) on Lime Dosing

Acidity & Alkalinity Definitions

Natural Waters:

 $pH_{4.5^{-5.0}} Alkalinity = [HCO_3^{-7}] + [CO_3^{2^{-7}}] + [OH^{-7}]$ Total Acidity = [H^+] + 2[H_2CO_3^{*7}] + [HCO_3^{-7}] - [OH^{-7}] $pH_{8.0^{-8.5}} Acidity = [H^+] + [H_2CO_3^{*7}]$ Carbon Dioxide Acidity = [H_2CO_3^{*7}] = 1 to 5 mg/L (as CaCO_3)

Mine Drainage Waters:

Carbon Dioxide Affected Mine Waters Assessment Categories

Parameter	Type 1	Type 2	Type 3			
p H	>5.0	4 to 5	<4			
Alkalinity (as mg/L CaCO ₃)	>10	0 to 10	0			
(Hot) Acidity (as mg/L CaCO ₃)	-200 to +200	0 to +800	+25 to 10,000			
Iron (mg/L) ¹	30 to 200	30 to 300	30 to 4,000 ¹			
Manganese (mg/L)	0.5 to 25	2 to 100	2 to 500			
Aluminum (mg/L)	<0.5	1 to 15	1 to 100			
Calcium (mg/L)	>150	50 to 250	50 to 500			
Sulfate (mg/L)	250 to 2,000	200 to 2,000	100 to 10,000			
CO ₂ Acidity (as mg/L CaCO ₃)	??	??	??			

 1 Will contain both ferrous (Fe $^{2+})$ and Ferric (Fe $^{3+})$

Carbon Dioxide Acidity Estimation (Methods)

1. Carbon Dioxide Measurement

- a. Total Inorganic Carbon Measurement (Laboratory only)
- b. pH or Bicarbonate (i.e., Alkalinity) Measurement (Laboratory or Field)
- c. $[H_2CO_3^*] = [TIC] [HCO_3^-]$
- d. Or $[H_2CO_3^*] = [TIC] \div (1 + (K_{a,1}/10^{-pH}))$

2. Equilibrium Calculation

- a. pH Measurement
- b. Alkalinity Measurement
- c. $[H_2CO_3^*] = 10^{-pH}/K_{a,1} \times [HCO_3^-]$

3. NaOH Acidity Titration

- a. Cold Acidity (Field Measurement)
- b. Hot Acidity (Lab Measurement) or Aerated Cold Acidity (Field Measurement)
- c. CO_2 Acidity = Cold Acidity Hot Acidity

4. Lime (Actual) Dose Titration

- a. Non-aerated Sample
- b. Aerated Sample (30 minutes)
- c. CO_2 Acidity = Non-aerated Aerated
- 5. pH Measurement (before & after aeration)

Laboratory vs. Field Measurement

Causes of Error

1. Laboratory pH

- a. Transport & Handling
- b. Open Container Measurement
- c. 20-25°C

2. Field pH

- a. Calibration of Meter/Electrode
- b. Type of Electrode
- c. Temperature of Calibration Buffers
- d. Accuracy of Field Equipment vs. Laboratory Equipment

3. Laboratory Alkalinity/Acidity

- a. Handling & Transport (Oxidation of Iron)
- b. Open Container Measurement (Oxidation of Iron)
- c. 20-25°C
- d. pH Endpoint

4. Field Alkalinity/Acidity

- a. Accuracy/Precision of Titration Equipment
- b. Color vs. pH Endpoint

5. TIC Measurement

- a. Transport & Handling
- b. Laboratory Equipment (Cold vs. Hot Oxidation)
- c. Technician??

Effects of Carbon Dioxide Acidity on Lime Dose

Complications of Lime Dose

2) Calcium Solubility as a function of pH

Step 1: $2CO_2 + Ca(OH)_2 \rightarrow Ca^{2+} + 2HCO_3^{-1}$ Step 2: $2HCO_2 + Ca(OH)_2 \rightarrow H_2O + Ca^{2+} + 2CO_3^{2-1}$ Step 3: $Ca^{2+} + CO_3^{2-} \rightarrow CaCO_{3(s)}$

Natural Pond Aeration

What is a Bubble? → a pocket of air suspended in water.

Gas Transport from and to Air Bubbles

Bubble Rise Through Water

Fine Bubbles rise at less than one-third the rise of coarse bubbles .:. Greater than 3 times the gas transport

Brandycamp Pre-aeration Pilot Study

8

AIS Pilot Studies

Aeration Studies Conducted at Different Detention Times, Air Flows, Bubble Type, &Water Temperature.

> Yield K_{La} & E_a for CO2 & O2

Field Testing

Comparison of hydrated lime dose tests (AMD inlet on left and aerated AMD on right)

Field NaOH Titrations

Field Ca(OH)₂ Titrations

Comparison of NaOH to Lime (Ca(OH)₂)Titration Effects of Endpoint on Dose

Effects of Carbon Dioxide on Lime Dose Rushton Mine Raw Water Calcium = 170 mg/L

Effects of Pre-Aeration on Metal Removal

PRE-AERATION SYSTEM INSTALLED

PRE-AERATION SYSTEM DESIGN CONSIDERATIONS

- Flexibility of Operation.
- Retrofit into Existing System.
- System Mobility for Future System Design/Operation.
- Safety & Access.
- Long term Efficiency of Design (i.e., balance capital costs to long term system operation).

Pre-Aeration System at the Rushton AMD Treatment Plant

Rushton AMD Treatment System Steel Tank Pre-Aeration Unit Construction Cost

Item	Cost
Pre-Aeration Tank Unit	
4 - 35,000 gallon Steel Tank - Above Ground Reinforced	
Coarse Bubble Diffuser System per Tank	\$490,000.00
Full Service Grating	
Walkways & Ladders	
Blower System – Three Phase System	
Two (2) Operating 40 HP Blower	\$60,000.00
Control Panel	
Installation Costs	\$200,000.00
Additional Site Improvements	\$250,000.00
Pre-aeration System Cost	\$750,000.00

Pre-Aeration System

Effects of Pre-aeration System on Lime (Ca(OH)₂)Dose

Flow = 4,700 gpm

Pre-aeration System Performance Using NaOH Titration

Sludge Composition Comparison

Prior To Installation of Pre-aeration Lime-based AMD Treatment Sludge **Composition** (on a dry weight basis) 9% Iron Hydroxide 49% Manganese Hydroxide 33% Aluminum Hydroxide Post Installation of Pre-aeration Calcium Carbonate **Pre-Aeration Rushton AMD Treatment Sludge** Magnesium Hydroxide **Composition** (on a dry weight basis) 5% 8% Iron Hydroxide 8% Manganese Hydroxide Aluminum Hydroxide Calcium Carbonate Magnesium Hydroxide 65%

%s represent averages of 2 samples

LIME CONSUMPTION AFTER PRE-AERATION

- Two truck loads per week reduced to one truck load per week after Pre-aeration System Installed.
 - 22 to 24 tons per truckload ~ 1,200 tons per year.
- Operational pH adjustments require minimal increase in dose.
 - ~ 1% dose increase yields 0.1 pH change between 9 and 10
- Manganese removal can be more effectively achieved with minimal increase in lime dose.
- Estimated savings per year ~ \$150-200,000

Mixing/Aeration In AMD Treatment

Dissolved Oxygen, Calcite Formation & Particle Shear

Mixing/Aeration Tank System

Multi-Process Tank

- 1. Mixing Provided to Dissolve Hydrated Lime Slurry & Suspended Iron Solids
- 2. Aeration Provided through Spargers to Add Dissolved Oxygen for Ferrous Oxidation
- 3. High Shear Impellers Required to Provide Both Mixing and Disperse Air Bubbles

Importance Of Dissolved Oxygen

Formation of Ferric Hydroxide (Fe(OH)₃) Precipitate when Sufficient Dissolved Oxygen Present

$Fe^{2+} + \frac{1}{4}O_2 + H^+ => Fe^{3+} + \frac{1}{2}H_2O$

1 mg/L of D.O. = 7 mg/L Fe²⁺ 100% Saturation @ 11°C = 11.0 mg/L 11 mg/L of D.O. = 77 mg/L Fe²⁺

Can Too Much Aeration & Mixing

2013. 9.26 22:16

Be a Problem?

Is Too Much Aeration or Mixing Shear A Good Thing?

> Is 100% Ferrous Oxidation Necessary in the Mixing/Aeration Tank?

Does Post-Lime Dose Aeration form Calcite?

Bench-Scale Mixing/Aeration Apparatus

Impeller Types

- 1. High Pump Rate
- 2. Low Shear
- 3. Low Power Ratio

- 1. Low Pump Rate
- 2. High Shear
- 3. High Power Ratio

(Existing Impeller)

Bench-Scale Testing

Comparison of Settled Total Iron from Various Mixing Tests

MIXING IMPELLERS INSTALLED

Impeller Replacement Cost

- Impeller Capital Costs = \$15,500
- Installation Required 6 man-days Labor = \$2,000
- Total Improvement Cost = \$17,500

Post Axial Impeller Installation

Effluent

Influent

- 1. Dissolved Oxygen maintained > 2 mg/L across Mixing Tank
- 2. "Green Rust" Present across tank
- 3. Noticeable decrease in blue/green across tank
- 4. Field testing indicates
 - a. 90% Ferrous oxidation in Mixing Tank effluent
 - b. 100% Ferrous oxidation in Sludge
- 5. Noticeable improvement in settling (Settling Basin Effluent Total Iron Decreased from 0.6 mg/L to 0.2 mg/L)

Benefits of Impeller Replacement

- Eliminated 80 Hp of Blowers approx. electricity savings = \$40,000/yr (does not include maintenance & replacement).
- Decreased Mixer power draw by 20-30% approx. electricity savings = \$5,000 - 7,500/yr
- Improved Settling Performance (initial testing shows a decrease in effluent total iron from 0.6 to 0.2 mg/L)
- Eliminate NEW Treatment System Cost to meet expected more stringent effluent limits.
- Scale Formation in Mixing Tank Eliminated (*due to both Pre-aeration & Eliminating Mixing Tank Aeration*)

Rushton AMD Treatment System Pre-Aeration System & Mixing Tank Modifications Overall O&M Cost Changes

Item	Change	Unit Cost	Annual Cost
Hydrated Lime	-0.75 tons/10 ⁶ gal	\$130/ton	-\$180,000
Operation & Maintenance			
new Blower Electricity (kwH/day)	+930 kwH/day	\$0.08/KwH	+\$27,000
old Blower Electricity (kwH/day)	-1350 kwH/day	\$0.08/KwH	-\$39,000
Blower Materials (\$/yr)	NC	NA	0
Mixer Motors (kwH/day)	-180 kwH/day	\$0.08/KwH	-\$5,000
Sludge Pumping (kwH/day)	-130 kwH/day	\$0.08/KwH	-\$4,000
Labor (Blowers, Tanks, Mixers, Slurry, Channels)	Decreased	\$40.00	unknown
Sludge Production	-60×10 ⁶ gal/yr	unknown	unknown
Change in Oper	-\$192,000		

Capital Costs recovered in < 3 years of operation

Cost vs. Benefits Future Work

New Polymer System & Sludge Management